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Abstract

In settings with variable local geographic conditions, the impact of interventions
can be confounded by heterogeneity in farmers’ ability to convert input into out-
put. This paper introduces a novel plot-level measure of agricultural inefficiency
that accounts for both input use and geographic endowments, enabling a more
accurate assessment of intervention impacts compared to the conventional choice
of actual yield as the outcome variable. We use this measure to evaluate a mobile
phone-based agricultural extension program in rural Bangladesh. We observe that,
in treated villages, after intervention, there is a 50 percent reduction in plot-level
inefficiency, driven by plots that used rainfed water for cultivation. We found these
effects to be driven by increased input usage by farmers doing rainfed farming. In
addition, we document that the intervention benefits geographically remote farmers
more, and find significant cross-community spillovers through geographic ties.
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1 Introduction

A body of research attributes income differences between rich and poor countries to
gaps in agricultural productivity largely driven by non-geographical factors (Gollin
et al., 2002, 2004, 2007; Restuccia et al., 2008; Adamopoulos and Restuccia, 2022).1 An
important factor that explains this productivity gap is the lack of adoption of new
technology and the use of traditional agricultural practices in poor countries (Foster and
Rosenzweig, 2010; Suri, 2011). Evidence shows that information friction can partially
explain why farmers may not adopt new technology or may not use it effectively
(Magruder, 2018).2

Although information frictions are known to contribute to agricultural productivity
gaps, the critical role of geographical heterogeneity in conjunction with these frictions
remains underexplored. As Suri (2011) notes, farmers face heterogeneous adoption
costs often rooted in microgeographic differences. In environments with variable
local conditions, we argue that the actual yield is an inadequate metric to assess the
effectiveness of information interventions, as this heterogeneity can obscure substantial
variation in the farmers’ ability to convert input into output.

This paper leverages a novel mobile phone-based agricultural extension program,
along with unique geocoded, nationally representative, plot-level panel data, to in-
troduce a new measure of agricultural inefficiency. The approach allows for a more
precise evaluation of the impacts of the intervention by taking into account both geo-
graphic endowments and input applications. In particular, we examine the impact of a
government-led extension program, the Agricultural Call Center Intervention (ACCI),
launched in Bangladesh in 2014. The intervention allowed farmers to consult experts
at any stage of crop production and was aimed at providing timely, need-based, and
farmer-specific services. Our key outcome variable is a novel plot-specific measure
of agricultural inefficiency constructed as the gap between the observed yield and the
potential agroclimatically feasible yield, conditional on the reported use of inputs.
We estimate potential yields using high-resolution data from the FAO’s Global Agro-
Ecological Zones project. We combine this with spatiotemporal variation in access
to mobile phone services across villages and temporal variation in the timing of the
intervention to identify the impacts of the intervention.

We find that access to the intervention reduces inefficiency by approximately 50

1Evidence suggests that policies and institutions in poorer countries play a critical role in restricting
economic choices made in the agriculture sector that misallocate resources across farms (Adamopoulos
and Restuccia, 2014). Land redistribution reforms, tenancy reforms, progressive land taxes, and input
subsidies to small landholders are examples of policies that distort the farm size distribution in poor
and developing countries (Adamopoulos and Restuccia, 2014). Some recent papers that have studied
misallocation due to distortions in land market institutions are (Restuccia and Santaeulalia-Llopis, 2017;
Chen, 2017; Gottlieb and Grobovšek, 2019; Adamopoulos and Restuccia, 2020).

2Informational inefficiency is even more detrimental to agricultural outcomes if climate change makes
future states of the world more unpredictable (Zilberman et al., 2012).
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percent, with effects concentrated among rainfed plots. In contrast, there is no significant
impact on farmers using tractors or intensive input bundles. We also document the role
of distance-based networks and geographic spillovers in modulating the impact of the
intervention. In villages with phone service, compared to better-connected households,
the inefficiency of geographically remote households differentially decreased after the
intervention. At the same time, their actual yields increased. These improvements are
not driven by changes in the use of rainfed farming or tractors, suggesting that the
gains come from the more efficient use of the existing mix of these inputs after the
intervention. We also find that the inefficiency of a household decreases more if it is
geographically closer to a community that received the intervention, indicating that the
spillover effects of the intervention strengthen with proximity to treated communities.

In terms of the mechanism of these results, we find that in villages with mobile
phone service, farmers with rainfed irrigation intensified input use per hectare after the
intervention. This included a higher use of both fertilizer and pesticide, along with an
increase in the amount of family labor used on farms. However, we find that farmers
who use tractors in their plots reduced their use of both fertilizer and pesticide after the
intervention, although they increased their expenses in seed purchases.

Our paper makes three contributions to the existing literature. First, our results
highlight the importance of geographical heterogeneity in evaluating the impact of
agricultural interventions. We build on the influential literature on agricultural ineffi-
ciency and misallocation, which has made novel efforts to study the role of geography
and natural endowments as important determinants of agricultural productivity and
economic growth (Henderson et al., 2001; Adamopoulos and Restuccia, 2022).3 Our
approach extends this work by incorporating microgeographic variation into the evalu-
ation of agricultural intervention impacts at the plot level. It is interesting to note that
although we find a significant reduction of inefficiency post-intervention, we do not get
any statistically significant results when using actual yield as the dependent variable.
Furthermore, our estimates of inefficiency reduction are higher than those of the impact
of ICT-enabled extension services on the actual yield documented in the literature.

Second, we contribute to the literature by studying the role of remoteness and social
networks in agricultural productivity. The role of social ties in amplifying the effec-
tiveness of extension efforts is well recognized in the literature (Banerjee et al., 2013;
BenYishay and Mobarak, 2018; Breza et al., 2019; Cheng, 2021; Beaman et al., 2021). The

3Using the high-resolution gridded micro-geography data made available by the Food and Agri-
cultural Organization (FAO) Global Agro-Ecological Zones (GAEZ) project (that we also use for our
analysis), Adamopoulos and Restuccia (2022) perform a cross-country analysis and find that there are
virtually no aggregate differences in land quality between rich and poor countries. They find that the
agricultural yield gap between top- and bottom-income decile countries almost disappears from 214
percent to 5 percent if the crops were grown at the potential yield. This suggests that the higher agricul-
tural inefficiency of poor countries is mainly due to non-geographical factors, which hinder farmers from
achieving the full potential of their farmlands’ natural endowments.
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literature also argues for the ease of communication between agents who live close to
each other, making social ties more likely between geographically proximate agents
(Helsley and Zenou, 2014; Kim et al., 2023). This highlights the role of geographic
centrality in economic development, also documented in the literature elsewhere (Don-
aldson and Hornbeck, 2016; Aggarwal, 2018; Shamdasani, 2021). We argue that the
advantage of ICT-based interventions is the reduced need to be geographically central in
terms of access to information. In this regard, we provide evidence that the intervention
differentially benefits geographically remote agents more, whose information needs are
otherwise unfulfilled by traditional extension services. However, the diffusion of in-
formation via networks remains relevant as we document significant cross-community
spillover effects through geographic ties.

Finally, the paper also contributes to the literature that studies the effectiveness of
Information and Communication Technology (ICT) based interventions in agriculture.
A large body of literature has already studied the role of ICT-based interventions in
agriculture (see Aker (2011) and Aker et al. (2016) for an in-depth review). However,
the associated evidence is quite mixed. While some find positive productivity impacts
of mobile phone-based interventions (Casaburi et al., 2014; Gupta et al., 2024), others
find none (Fafchamps and Minten, 2012; Cole and Fernando, 2020). In this paper, we
investigate the effectiveness of a government-sponsored large-scale mobile phone-based
intervention in Bangladesh. Although similar studies exist in India (e.g. Gupta et al.,
2024), we are the first to provide evidence for this type of intervention in Bangladesh.
As we argue later, ex-ante, we expect the effectiveness of such intervention to be
significantly different in Bangladesh, as compared to India, due to Bangladesh being
more linguistically homogeneous than India.

The remainder of this paper is organized as follows. Section 2 provides the contextual
background of our study. Section 3 discusses the empirical design of our study, which
includes a description of the data sources, some descriptive statistics, and a description
of our empirical strategy. We present our results in sections 4 and 5. We provide an
array of robustness checks in Section 6. Finally, Section 7 summarizes our main findings
and concludes.

2 Background

2.1 The Agricultural Call Center Intervention

Despite rapid economic growth in recent decades, Bangladesh remains a largely rural
country. More than two-thirds of the population resides in rural areas and is primarily
engaged in agricultural activities (Asian Development Bank, 2023). Agriculture accounts
for 40 percent of the overall employment in Bangladesh (Asian Development Bank,
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2023). Rice occupies the dominant place in Bangladesh’s agriculture and is cultivated
almost the entire year across all three agricultural seasons: Aman, or the monsoon
season; Boro, or the winter season; and Aus, the intermediate summer season. It is
also the staple crop, accounting for around 80 percent of the cultivated area (Asian
Development Bank, 2023).

Although Bangladesh is the third largest rice producer globally, compared to other
major rice-producing countries, rice productivity in the country is relatively low, around
4.9 tonnes per hectare (see Figure 1 for a comparison with other major rice-producing
countries). Given the centrality of rice in Bangladesh’s rural economy and the domi-
nance of small-scale agriculture, this low rice productivity threatens the food security
and livelihoods of the large agriculture-dependent rural population in the country.
Small-holder rice producers face structural limitations in access to information about
the availability of new modern seed varieties and agrochemicals (Sarker et al., 2021).
Bangladeshi farmers still rely on traditional farming practices, and the use of modern
agricultural practices such as soil testing and the use of new varieties, fertilizers, and
pesticides remains low (Sarker et al., 2021).

Figure 1: Rice yield of top 20 rice producers

Notes: Figure plots the rice yield (bars) and total rice production (dashed line) for the top 20 rice producers
globally for the year 2022. Based on data from FAOSTAT obtained from https://www.fao.org/faostat/
en/home.

Like other developing countries around the world, Bangladesh has also seen a dra-
matic increase in mobile phone coverage in recent decades (Figure 2). From the negli-
gible coverage of cell phones in the early 2000s, almost all households in Bangladesh
reported having access to a mobile phone in 2022 (Bangladesh Bureau of Statistics, 2022).
Taking advantage of the widespread dissemination of mobile phone technology in rural
Bangladesh, the government-run Agriculture Information Service (AIS) launched a mo-
bile phone-based agricultural helpline in June 2014 (Huber and Davis, 2017; Department
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of Agricultural Extension, 2018). The AIS established Krishi Call Centers (Agricultural
Call Centers), where farmers, at a nominal cost of 25 paisa/minute, call and consult
experts on various aspects of agriculture (Huber and Davis, 2017).

Figure 2: Trends in mobile phone coverage in Bangladesh

Notes: Figure plots the trends in overall and per 100 persons mobile phone subscriptions in Bangladesh,
as per the data obtained from the World Bank World Development Indicators database.

The program was successful and reached more than 30,000 households within a year
of its launch in 2014 (Huber and Davis, 2017). The need of farmers for expert advice
and the impact of deep penetration of mobile services is reflected in the fact that around
1 lakh solutions/advice were disbursed to farmers via the Krishi Call Centers as of
August 2018.4 Although we were unable to gather actual data on the usage of the
intervention, based on our communications with Bangladeshi officials, farmers would
generally seek information on modern agricultural inputs, including advice on diseases
and pest management on the farm. These usage patterns are consistent with what is
observed in a similar intervention in India (Kumar et al., 2021).

2.2 Potential for Telecommunication Extension Services

Farmers have different information needs based on the realization of the state of the
world at different stages of crop production. Although farmers may rely on experience
and social connections to serve such needs, the quality and relevance of such information

4As reported on the official website of the Agriculture Information Service (AIS) Bangladesh. See
http://www.ais.gov.bd/site/page/e24c72ff-aed9-4497-a4d3-87ef07bc33c6/-, for details.
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would depend on the set of information of other farmers in the village (Bandiera and
Rasul, 2006; Deichmann et al., 2016). Agricultural extension can play a critical role
in updating the information set of farmers in the village (Anderson and Feder, 2004;
Norton and Alwang, 2020). Extension services can be critical to serve information needs
and raise awareness of modern practices among farmers (Anderson and Feder, 2004).
Even if farmers are using modern inputs such as fertilizers and pesticides, evidence
shows that farmers can make errors in the timing and use of such inputs (Islam and
Beg, 2021). Extension agents can help farmers guide the correct usage of modern inputs
(Anderson and Feder, 2007; Sheahan and Barrett, 2017; Islam and Beg, 2021).

However, in-person agricultural extension services have limited outreach and are
expensive to run and operate (Fabregas et al., 2019b). In addition, in-person extension
services are primarily operated by the public sector and are fraught with inefficiencies
(Aker, 2011; Cole and Fernando, 2020; Alam and Kijima, 2024). The widespread access
to mobile phones and telecommunication services provides a cheap and effective way
to reach distant farmers (Magruder, 2018; Fabregas et al., 2019b). Although traditional
in-person extension may not be available to all farmers at all times, mobile phone-based
agricultural extension programs can provide farmers with timely and need-specific
information services at different stages of crop production (Aker, 2011; Duncombe,
2016). Experimental evidence on the effects of mobile extension services on modern
technology adoption and agricultural outcomes has been encouraging (Casaburi et al.,
2014; Aker and Ksoll, 2016; Fu and Akter, 2016; Cole and Fernando, 2020; Campenhout,
2021).

In addition, mobile phones also allow for greater information exchange via social net-
works (Norton and Alwang, 2020). The importance of existing social ties in the success
of agricultural extension interventions is well documented (Breza et al., 2019; Cheng,
2021). Learning from social ties was even more effective than learning from extension
agents (Krishnan and Patnam, 2013). The literature documents a complementarity
between the delivery of information through extension services and the dissemination
of the same through existing social networks (BenYishay and Mobarak, 2018). Studies
have shown that extension agents can use this complementarity to design cost-effective
interventions to deliver information to a larger set of agents in a limited time and budget
(Akbarpour et al., 2020; Beaman et al., 2021; Banerjee et al., 2023).

However, the literature also documents that the effectiveness of such interven-
tions in reaching a population with heterogeneous information needs may be limited
(Chakraborty, 2024). This is particularly true if the cost and benefits of adopting some
practices differ from one agent to another (as discussed in Suri (2011)) or the speed of
learning relies on population heterogeneity (as documented in Munshi (2004)). The
results of this literature highlight the importance of investigating the possible hetero-
geneity in social learning in the amplification of any extension efforts.
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In light of the evidence from the literature discussed above, it is thus necessary
to assess the ground-level impacts of large-scale ICT-based extension programs such
as Bangladesh’s Agricultural Call Center Intervention (ACCI). Although there are
studies documenting the impact of a similar government-sponsored large-scale mobile
phone extension program in India, there are no studies for Bangladesh.5 An important
feature of the Indian program is that the language in which agricultural advice was
offered varied according to the official language of each Indian state. Gupta et al. (2024)
document that this can lead to a barrier if there is a mismatch between the official
language and the languages spoken and understood by subpopulations within a state.
Unlike India, this additional friction does not exist in Bangladesh as the advice was
given in Bengali, the official language of Bangladesh, which is spoken and understood
by almost the entire population of the country.

3 Empirical Design

3.1 The Bangladesh Integrated Household Survey (BIHS)

Our primary data comes from Bangladesh Integrated Household Surveys (BIHS).6 The
BIHS, funded and implemented by the United States Agency for International Devel-
opment (USAID) and the International Food Policy Research Institute (IFPRI), collects
detailed information on all aspects of the social and economic lives of households in
rural Bangladesh. The BIHS is based on a multistage stratified sampling procedure and
is nationally representative and representative of the seven administrative divisions of
rural Bangladesh.7 The surveys were conducted in three rounds: 2011-2012, 2015, and
2018-2019. The first two rounds covered 6,500 households across 325 Primary Sampling
Units. The third round covered the same number of PSUs and could resample 5,604 of
the original households.

A unique feature of the BIHS is the access to the geocoded location of the surveyed
households. Harmonized survey data provide the latitude and longitude of the sampled
households with a 2-kilometer offset to maintain anonymity. This information is critical
for us both from the point of view of constructing the inefficiency measure and the
empirical strategy.8 Our primary focus is the roster of all land and water bodies owned
by households and the agricultural module of the survey. The roaster provides us with

5See, for example, Gupta et al. (2024) for evidence on the Indian mobile phone-based extension
program.

6These surveys are publicly available and can be found at https://dataverse.harvard.edu/
dataverse/IFPRI/?q=Bangladesh+Integrated+Household+Survey

7The seven administrative divisions are Barisal, Chittagong, Dhaka, Khulna, Rajshahi, Rangpur, and
Sylhet.

8The 2-kilometer random offset to actual household locations should not bias our estimates, as it is
time-invariant and uncorrelated with the intervention.
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information on all the agricultural plots operated by the household, including their size,
operational status, and distance from the place of residence. The agricultural module
collects plot-level information on cultivated crops, planted areas, variety, and types. It
also collects detailed information on the inputs used and the quantity harvested. Of the
total plots grown during the three rounds, households reported cultivating paddy in 71
percent of the plots. Given that rice or paddy is a major staple crop in Bangladesh and
the dominant crop in BIHS, we focus only on it.9

The BIHS also provides detailed information on the access of households to agricul-
tural extension services and various input subsidies provided by the government of
Bangladesh. The extension module collects responses about extension agent visits, the
type of advice given for different inputs, and whether it was useful. The module also
records whether the household received an input subsidy from the government. In
addition to information on cultivation and access to extension services, we use data from
modules on household composition, access to various facilities, housing conditions,
assets, food and non-food consumption, non-farm enterprises, loans and borrowings,
and self-reported economic shocks.

Another attractive feature of the BIHS is the community module of the survey, which
collects information on access to facilities for the villages sampled. The community
module collects data on the availability of facilities such as roads, banks, police stations,
and mobile and telephone networks, along with the year in which it was established.10

Our empirical framework will particularly focus on the timing of the arrival of telephone
and mobile services in the village.

3.2 Main Outcome Variable: Agricultural Inefficiency

Although rice productivity per unit of land is a natural choice for an outcome variable,
it may not be the most appropriate metric for our analysis. Productivity differences
between households reflect not only variations in natural endowments but also differ-
ences in input use. For example, a farmer cultivating poor-quality soil may achieve
relatively high yields by adopting an intensive input mix, whereas another farmer
operating on more favorable land may underperform due to suboptimal input use.
This highlights that potential yields will vary between farmers, both due to natural
conditions and input use. Moreover, the production possibility frontier may also shift
in response to the intervention itself. Consequently, the potential yield a farmer can
achieve, which is the relevant benchmark for assessing inefficiency, can change after
intervention. Although farmer fixed effects can control for time-invariant unobserved

9We restrict our analysis to households that report cultivating rice and exclude those that do not
produce paddy. This leaves us with approximately 40 percent of the surveyed households.

10Complete data for community facilities is available only for the second and third rounds of the BIHS.
We use the community survey module for only the third round.
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heterogeneity, meaningful comparisons would ideally require counterfactual estimates
of potential yields that account for local agroclimatic conditions under varying input
scenarios.

To make productivity comparisons meaningful, we utilize a counterfactual measure
of potential yield that accounts for both geographic endowments and input bundles. We
obtain these potential yield estimates from the Global Agro-Ecological Zones (GAEZ)
dataset. The GAEZ database provides high-resolution, agroclimatically feasible yield
estimates for four input combinations – rainfed-low, rainfed-high, irrigated-low, and
irrigated-high – in each grid cell. These four potential yield estimates establish a
production possibility frontier based on natural endowments and the actual input mix,
against which actual productivity can be compared.11 Furthermore, based on actual
input choices, the frontier can also be allowed to change over time.

Our main outcome variable is a measure of inefficiency, defined as the gap between
actual and potential yields at the plot level. To construct this measure, we combine
household geolocation data (latitude and longitude) and plot-level input usage from
the BIHS dataset with agro-climatically feasible potential yields from the Global Agro-
Ecological Zones (GAEZ) dataset. Specifically, we match the geographic coordinates of
each plot to the corresponding GAEZ grid cell and retrieve potential yields conditional
on the observed input combinations. The resulting plot-specific potential yield reflects
what could conceivably be produced given the natural endowment of the plot and the
actual use of inputs. We then define inefficiency as the percentage difference between
actual and potential yield:

Inefficiencyijcdst =

(
Potential Yieldijcdst

Actual Yieldijcdst
− 1

)
× 100 (1)

where both potential and actual yields vary spatially and over seasons and years.
The potential yield for growing the same crop could vary for two reasons. First, with

the same type of cultivation inputs, it could vary between different grid cells due to
the differences in their geographical attributes. Second, potential yields can also be
different for agricultural plots that lie within the same GAEZ grid cell but use different
combinations of cultivation inputs. Different inputs to cultivation lead to different
rates of various biophysical growth processes for a given crop, resulting in different
maximum attainable yields. As a result, our measure of Inefficiency varies depending
on both the geographical location of the agricultural plots and the actual input choices
made by the farmers.

We consider two critical inputs in the construction of plot-level potential yield. The
first input is the type of water supply, which is classified as rainfed or irrigated. The

11Appendix A for details on the GAEZ database. Also, see Adamopoulos and Restuccia (2022).
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second input is the use of tractors, which we treat as a proxy for high-input farming.
This choice is motivated by two reasons. First, tractors are a costly and versatile form
of machinery that can be used at various stages of rice production, including soil
preparation, seedling transplantation, spraying (which improves irrigation efficiency
by reducing water and fertilizer use), harvesting, and postharvest transport. Their use
is typically associated with commercial farming, rather than subsistence. For context,
the price of a tractor ranged from 1 to 2.2 million Bangladeshi Takas in 2018, while
the average per capita income was only 0.13 million Takas.12 Second, while nearly all
plots in our sample report the use of fertilizers (98.6%) and pesticides (86.7%), only a
small share (8.35%) used tractors. Most (88.8%) used powertillers, which is a handheld
machine that performs similar functions but with lower efficiency. This further supports
the use of tractor usage as a meaningful indicator of high-input farming.

Figure 3: Variation in Inefficiency Densities

Notes: (1) The four possibilities for plot-level inefficiency correspond to the potential yield of four possible
input combinations compared with the actual yield, assuming the same inputs for all plots. Whereas, the
realized inefficiency corresponds to the comparison of actual yield with the potential yield as per the
actual inputs usage on the plot. (2) The realized inefficiency distribution is a conservative estimate given
our choice of "tractor-usage" as the proxy for a high level of complementary input usage. As evident
in the figure, both its mean and spread would have been higher if more plots were classified as using
"high" inputs. The mean and standard deviation for realized inefficiency are 15 and 167 percentage points,
respectively. The mean for "low" inputs scenarios is −13 and 4 percentage points, whereas for "high"
inputs cases, it is 182 and 238 percentage points for rainfed and irrigated water supply, respectively.
While, the standard deviation for "low" inputs scenarios is 111 and 132 percentage points, whereas
that for "high" inputs cases, it is 359 and 430 percentage points for rainfed and irrigated water supply,
respectively.

12Sources: https://www.thedailystar.net/business/news/tractor-sales-drop-1835503 and the
Bangladesh Bureau of Statistics (http://nsds.bbs.gov.bd/en).
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Figure 3 shows the distribution of our inefficiency measure under different hypothetical
input choices. The figure demonstrates how the same set of agricultural plots can face
different levels of inefficiency due to differences in their corresponding input choices.
In the figure, the distribution of realized inefficiency corresponds to the actual input
choices made by farmers. As is evident in the figure, both the mean and the spread
of inefficiency are higher in the case of high input usage. Our choice of having tractor
usage as a proxy for high-yielding input seems to be a more conservative assumption,
as the realized inefficiency distribution is closer to that of low-input scenarios with a
mean of 15 and a standard deviation of 167 percentage points, respectively.

There are many plots where the actual yield is greater than the potential yield, result-
ing in a negative inefficiency measure. First, this could be because the farmer might
be compensating for poorer natural endowments or lack of irrigation infrastructure
or mechanization by overusing other inputs, such as fertilizer and pesticides. This
might lead to higher productivity now at the cost of lower productivity in the future.
Evidence from the literature suggests that Bangladeshi farmers use chemical fertilizers
excessively (Islam and Beg, 2021). We will explore this in our discussion of mechanisms.
Alternatively, we also check the robustness of our estimates after controlling for other
input usage.

The second reason for having negative inefficiency values could be more mechanical,
due to the way we assign potential yield to plots. For example, a plot might get
assigned a rainfed-low input combination because they did not report using a tractor in
the survey, but it is possible that they used other inputs, qualifying as high input usage.
So, in this case, the negative inefficiency is due to the actual yield being compared to a
lower, more conservative estimate of potential yield. To address this issue, we tested for
the sensitivity of our estimates to the use of alternative input mixes for potential yield
construction, which we report in the appendices.

Finally, even with the right assignment of input combination at the plot level, the
geographical location of the farming plot could have a higher potential yield than the
average potential yield reported at the GAEZ cell level. Given the large size of a GAEZ
cell, around 8000 hectares for Bangladesh on average, there exists heterogeneity in land
productivity (see footnote 26) for growing any crop within it (Sotelo, 2020). Thus, a plot
with better land quality than the average land quality of the GAEZ cell in which it lies
will be able to achieve a higher actual yield compared to the average GAEZ potential
yield. We check the robustness of our estimates to this by assuming that the plot-level
potential yields follow the independent and identically distributed Frećhet distribution
and then compare the 90th percentile plot-level potential yield with the actual yield to
measure plot-level inefficiency.13 Details of the simulation procedure and the implied

13Historically, farmers positively select the land for cultivation and given the large size of a simulation
plot (5 hectares compared to average plot size less than 1 hectares in data), it is a fair assumption to
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parcel yield density can be found in Appendix B.
In figure 4, we look at the inefficiency measure aggregated at the village level as the

simple average of the plot inefficiencies. Clearly, there has been a declining trend of
inefficiency over the years, with a greater number of villages falling in the lower ineffi-
ciency brackets over time. For example, the share of villages with negative inefficiency
(blue-colored) increased from 30 percent in 2011 to 54 percent in 2015 and 64 percent in
2018. The figure also shows the spatial variation of inefficiency in rice production in
Bangladesh. One stark observation is that the villages along the eastern boundary and
the coastal villages in the south-east have positive inefficiencies, which do not go down
in the post-ACCI period as well.

(a) For survey year 2011 (b) For survey year 2015 (c) For survey year 2018

Figure 4: Village-level inefficiency over survey years using surveyed households

Notes: For each survey year, we calculate the village-level inefficiency by taking a simple average of
plot-level inefficiency in a village. The "No Data" villages are the ones that were not a part of BIHS.

3.3 Enhanced Vegetation Index and Climate Data

We also use data on satellite-based gridded measures of green cover and vegetation
coverage from NASA’s MODIS instrument.14 These indices are available at a very high
spatial resolution of 250 meters for 16-day intervals. Although the Enhanced Vegetation
Index (EVI) is not a direct measure of crop productivity, studies show that it correlates
well with actual yields and can be a useful measure when actual data are not available
(Jaafar and Ahmad, 2015). We use household geocodes to extract and aggregate EVI
within a radius of 2 kilometers of each of the households.15 We use this proxy measure
to generate long-term event plots to test for parallel trends.

compare a higher percentile potential yield for measuring inefficiency.
14Publicly available from https://modis.gsfc.nasa.gov/data/dataprod/mod13.php.
15Given that household geo-location is randomly displaced by 2 kilometers, this procedure helps in

averaging out measurement errors.
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As time-varying weather conditions serve as an important input in the agricultural
production process, we control for these in our regression specifications. We extract
weather variables from the TerraClimate dataset.16 TerraClimate provides global grid-
ded monthly rainfall and temperature data from 1958 to 2020 with an approximately
4-kilometer spatial resolution. We use these global surfaces and the geo-location of
BIHS sample clusters to calculate total seasonal rainfall and temperature for the three
BIHS survey years.

3.4 Descriptive Statistics

Table 1: Summary Statistics for Key Variables over the Survey Years

Variable 2011 2015 2018 Total

Inefficiency (in Percentages) 28.070 9.061 1.028 14.683
(182.174) (153.484) (94.813) (154.116)

Actual Yield (in Kilograms per Hectare) 3586.791 4101.699 4194.39 3916.273
(1686.916) (1632.24) (1475.167) (1638.473)

Phone Service in the Village (=1 if Yes) 0.413 0.465 0.457 0.442
(0.492) (0.499) (0.498) (0.497)

Used Rainfed Farming (=1 if Yes) 0.327 0.311 0.281 0.309
(0.469) (0.463) (0.450) (0.462)

Used Tractor (=1 if Yes) 0.072 0.078 0.102 0.082
(0.258) (0.268) (0.303) (0.274)

Plot Ownership (=1 if owned) 0.562 0.594 0.572 0.575
(0.496) (0.491) (0.495) (0.494)

Has Agricultural Subsidy Card (=1 if Yes) 0.191 0.358 0.272 0.267
(0.393) (0.479) (0.445) (0.442)

Minimum Temperature of the Village (in °C) 18.054 17.364 17.709 17.737
(5.347) (5.040) (4.206) (4.974)

Maximum Temperature of the Village (in °C) 29.926 29.092 29.080 29.429
(3.160) (4.836) (3.459) (3.881)

Average Yearly Rainfall of the Village (in mm) 299.255 165.936 240.471 240.087
(506.818) (243.298) (247.398) (378.904)

Observations 11254 9018 7320 27592

Notes: The table reports the means for the main dependent, explanatory, and control variables employed in our
analysis. Standard deviations are in parentheses. The values are for observations restricted to non-missing values
of all the variables reported here. The variables Inefficiency, Actual Yield, Used Rainfed Farming, Used Tractor, and
Plot Ownership are captured at the plot level. Agricultural Subsidy Card dummy is captured at the household level.
Weather measures are captured at the village level.

Let us now look at the trend of some of our key variables over time. Table 1 presents
the descriptive statistics of key variables for the three years of the survey. In general,
we observe a declining trend in the inefficiency measure and an increase in average rice

16Publicly available from https://www.climatologylab.org/terraclimate.html.
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yields in Bangladesh. These trends are consistent with Figure 4. Around 44 percent of
the villages in our sample report the availability of phone service. In terms of household
and plot characteristics, about one-third of households report practicing rainfed farming.
The reported machine use is low, with only 8 percent of households reporting tractor
use. Finally, 27 percent of households report having an agricultural subsidy card,
which allows them to purchase input at government-subsidized prices. These statistics
highlight that the average inefficiency in rice production has been reduced even with
relatively low levels of mechanization, rainfed irrigation, and limited coverage of input
subsidies. In the next section, we discuss how the ACCI contributed to the observed
trends in rice productivity and inefficiency.

Figure 5: Telephone (or mobile phone) coverage in the surveyed villages

Source: Based on the community survey module for the third round of BIHS.

Figure 5 shows the trend in phone coverage in BIHS villages over time. As we
can see, similar to Figure 2, the BIHS sample communities have also reported a rapid
increase in access to phone services over time, starting in the early 2000s. However,
during the survey years, the overall access has remained mostly stable between 41-
47 percent. This indicates that the access to the ACCI did not vary much for these
villages during the survey round. Therefore, the spatial dimension of this access is more
important for our analysis than the temporal dimension. As it remains possible that
communities improved their access to phone services as a response to the intervention,
in the Appendix D we also demonstrate the robustness of our results, keeping access to
phone services fixed at the baseline.
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3.5 Empirical Strategy

3.5.1 Identifying the Impact of the Intervention on Agricultural Outcomes

We start with the canonical difference-in-differences (DID) specification to identify the
impact of the Agricultural Call Center Intervention (ACCI) on plot-level outcomes:

Outcomeijcdpst =a0 + a2Phone Servicec × Post ACCIt + a3Xijcdt+

σi + δp + ϕs + λt + ψd × λt + εijcdpst (2)

where Outcomeijcdpst is the outcome for agricultural plot j, cultivated by household
i from community c of division d at year t for season s and crop-type p. We define
Phone Servicec as a dummy that indicates whether the community c reported having
phone service at the baseline (i.e. in 2011). Post ACCIt is the time dummy that captures
whether the survey year t is post-introduction of the Agricultural Call Center Interven-
tion. Note that for this specification, we consider the phone access to be fixed at the
baseline and remove all communities that received phone service in 2015 and 2018.

The levels of both Phone Servicec and Post ACCIt are omitted from the specification
since the regression includes fixed effects for households (σi) and years (λt). The
specification also includes δp and ϕs as fixed effects of crop type and season, respectively.
It also includes the interaction of fixed effects of divisions (ψd) with fixed effects of
year (λt) to control for characteristics that vary over time at the division level. In the
specification, Xijcdt controls for some time-varying observable characteristics (such as
weather), with ϵijpst being the random error in the regression. The coefficient a2 captures
the difference in the average outcome between communities with and without access
to phone service in the baseline, before and after the intervention. If the intervention
improved farmers’ productivity, we would expect a decrease in the inefficiency measure,
leading to a2 < 0 with our inefficiency measure as the outcome variable.

Building on the specification (2), we define a second model in which we use data
from all communities in estimation. Consider the following DID equation:

Outcomeijcdpst =b0 + b1Phone Servicecdt + b2Phone Servicecdt × Post ACCIt

+ b3Xijcdt + σi + δp + ϕs + λt + ψd × λt + ϵijcdpst (3)

where the key difference is that Phone Servicecdt dummy now also varies with the year
of the survey to capture improving access over time. All other variables are defined
as before. In this specification, only the level term of Post ACCIt is omitted due to
collinearity with year-fixed effects. As before, we expect b2 < 0 with our measure
of inefficiency as the outcome variable, implying that the intervention led to lower
inefficiency in rice production.
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3.5.2 Exploring the Heterogeneity in the Impact by Input Usage

In order to examine whether the effect of ACCI varies differentially by input use, we
exploit the spatiotemporal variation in the plot-level input usage of the households, in
addition to the spatiotemporal variation in community-level exposure to phone services
and the temporal variation in the introduction of the ACCI. In particular, we use the
following triple-differences specification:

Outcomeijcdpst = α0 + α1Phone Servicecdt + α2Inputijcdt + α3Phone Servicecdt × Inputijcdt

+ α4Phone Servicecdt × Post ACCIt + α5Inputijcdt × Post ACCIt

+ α6Phone Servicecdt × Inputijcdt × Post ACCIt + α7Xijcdt

+ σi + δp + ϕs + λt + ψd × λt + ϵ′ijcdpst (4)

where Inputijcdt are dummies capturing whether the household i from community c of
division d use different inputs on their plot j at time t. Our coefficients of interest are
α6, which capture the differential effect of ACCI post-intervention by different input
use. The sign of the coefficients depends on whether the intervention was successful in
communicating the effective use of the input.

4 Results

4.1 Impact of ACCI on Agricultural Performances

We begin by presenting event plots based on the EVI-based household-level crop
productivity measure. Although having long-term data on actual paddy yields would
have been ideal, we nevertheless check for differential crop productivity trends using
EVI data. Figure 6a displays the average difference in EVI between communities
with and without phone access from 2001 to 2019. Before the intervention, there was
no consistent pattern in EVI differences, with estimates largely fluctuating around
zero. However, after 2014, we observe a consistent increase in average EVI for treated
communities compared to control communities.

Figure 6b presents the event plots using data from the three BIHS survey rounds.
Although the differences in average rice yields and inefficiency between treated and
control communities are close to zero in the pre-intervention period (2011), we find
that the average inefficiency is much lower in treated communities compared to control
communities after the intervention in 2014. These patterns are largely consistent for
both the EVI-based measure and actual rice yields, indicating that rice farming became
more productive in communities with phone service only after the intervention.
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(a) Enhanced Vegetation Index (b) Actual Yield and Inefficiency from BIHS

Figure 6: Event Study Plots

Notes: Panel (a) shows the event plots with 2014 as the base year. Based on household-level monthly
Enhanced Vegetation Index (EVI) estimated from the NASA MODIS gridded data. Panel (b) plots the
DID coefficient estimates from the BIHS rice yield and inefficiency measure, focusing on the plots that
are within 2 kilometers of their respective household locations. The regressions for this panel include
season and year-fixed effects, crop-type fixed effects, and time-varying controls. Time-varying controls
include the dummy capturing whether the household owns the plot, a dummy capturing whether the
household has an agricultural input subsidy card, and the weather of the household’s village as reflected
by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm). Both
panels depict regression results that are clustered at the community level. The monthly weather variables
of the household’s village are also controlled for in producing the event plots of the panel (a).

Table 2 presents the baseline estimates from the canonical difference-in-differences
specification (regression (2)) in panel (A) and from specifications that allow for time-
varying community phone access (regression (3)) in panel (B). Both panels also include
results from the corresponding triple difference specifications (regression (4)), which
estimate the post-intervention effect of the ACCI on agricultural outcomes at the plot
level and document heterogeneity in these effects based on input use. Although we
report results from the canonical DID model for robustness, our preferred specifications
are with time-varying measures of community phone service access. For comparison,
we report estimates using both plot-level inefficiency and actual yield as outcome
variables.

Table 2 panel (A) reports estimates from the double and triple difference specifications,
where we keep the access to the community-level phone service fixed at the baseline.
Consistent with the event plots in figure 6b, column (1) shows a negative and statistically
significant coefficient on the interaction term, indicating a decrease in inefficiency in
treated communities following the intervention. Although estimates with actual yield
are in the expected direction, they are statistically insignificant (column (2)). We causally
interpret the coefficient on only the triple interaction terms. Estimates from the triple
difference specification in column (3) show that this decrease in inefficiency was mainly
driven by rainfed plots.

Panel (B) of Table 2 presents the estimates of our preferred specifications with time-
varying community phone access. Looking at columns (1) and (2), we observe that the
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Table 2: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances

(1) (2) (3) (4)
Inefficiency Actual Yield Inefficiency Actual Yield

Panel A: Specifications with Phone Access fixed at the Baseline

Phone Service in the Village × Post ACCI -17.272** 137.230 -1.089 135.936*
(7.012) (97.112) (4.046) (81.920)

Used Rainfed Farming -8.736 -136.971*
(7.251) (78.366)

Used Tractor 221.094*** 8.536
(12.733) (78.731)

Used Rainfed Farming × Phone Service in the Village 31.804*** -257.311***
(11.718) (94.069)

Used Tractor × Phone Service in the Village 25.567 -13.962
(32.850) (140.240)

Used Rainfed Farming × Post ACCI 4.991 62.457
(9.466) (94.501)

Used Tractor × Post ACCI -60.923*** 276.328*
(23.109) (151.066)

Used Rainfed Farming × Phone Service in the Village × Post ACCI -46.242*** 178.714
(12.977) (126.687)

Used Tractor × Phone Service in the Village × Post ACCI 0.095 -664.543**
(44.399) (271.156)

Observations 24901 25519 24901 25297

R2 0.401 0.617 0.464 0.620

Panel B: Specifications with Temporal Variation in Phone Access

Phone Service in the Village -5.640 -164.784 -8.381 -111.050
(11.410) (101.555) (7.746) (96.423)

Phone Service in the Village × Post ACCI -15.634** 110.545 -1.963 87.096
(6.794) (99.436) (4.048) (80.204)

Used Rainfed Farming -0.423 -161.954**
(7.245) (73.481)

Used Tractor 230.904*** -5.803
(11.984) (70.683)

Used Rainfed Farming × Phone Service in the Village 24.223** -222.761***
(10.750) (85.864)

Used Tractor × Phone Service in the Village 16.643 43.134
(30.384) (131.907)

Used Rainfed Farming × Post ACCI -1.518 87.067
(9.273) (92.611)

Used Tractor × Post ACCI -63.520*** 257.615*
(22.440) (147.503)

Used Rainfed Farming × Phone Service in the Village × Post ACCI -43.539*** 163.653
(12.223) (120.209)

Used Tractor × Phone Service in the Village × Post ACCI -15.905 -82.591
(39.255) (252.435)

Observations 27298 27991 27298 27723

R2 0.399 0.631 0.468 0.633

Mean Baseline Outcome 29.625 3582.026 29.625 3582.026
(SD) (208.816) (1734.7) (208.816) (1734.7)

Notes: * p<0.10, ** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for
the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether the
household’s community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post
introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used rainfed
farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations.
All regressions include year and season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year-fixed
effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an
agricultural input subsidy card, and the weather of the household’s village as reflected by the minimum and maximum temperature of the year (in °C)
and average yearly rainfall (in mm).

19



arrival of phone service in the village itself does not influence the inefficiency or actual
yields of the paddy. Consistent with the estimates in panel (A), the availability of village
phone service reduces inefficiency only after intervention. In terms of magnitude, the
intervention led to a 50 percent reduction in the average baseline inefficiency.

Columns (3) and (4) in panel (B) show that the reduction in inefficiency after the
intervention was primarily driven by rainfed farming plots. Although the triple interac-
tion between tractor use, village telephone service, and the post-ACCI period produces
a negative coefficient, it is not statistically significant. Given that approximately 31
percent of farmers in our sample rely on rainfed agriculture, the estimated differential
impact of the intervention on inefficiency reduction for the average farmer is around 45
percentage points. This translates to a decrease of approximately 0.1 standard deviations
in our constructed inefficiency measure.

How do these estimates compare to the existing experimental evidence? Casaburi
et al. (2014), for example, find an 11.5 percent increase in sugarcane yields from SMS-
based randomized extension advice in Kenya. Comparing several experimental studies,
Fabregas et al. (2019b) report that digital extension programs to farmers increased crop
yields by about 4 to 6 percent. Our estimates are somewhat larger but not directly
comparable with these estimates for two reasons. First, the dependent variable we
consider is not just crop yield, but rather the deviation from the potentially achievable
yield. In fact, we get a null result by using actual yields. Second, our estimates also
incorporate the possible spillover and network effects of such extension programs. We
discuss such effects in Section 5.

4.2 Mechanisms

We further investigate the possible mechanisms behind the effects observed in the
previous section. First, we test whether the effects are driven by improved extension
services in villages with phone service after the ACCI. For this purpose, we estimate
the triple difference specification (4) with information on in-person extension services
as dependent variables. As documented in panel A of Figure 7, we do find some post-
intervention evidence of differentially greater access to extension agents for farmers that
use rainfed farming, but we do not find statistically significant effects on the likelihood
of an extension visit or whether the farmer actively seeks advice from an agent.

We also estimate the triple difference specification (4) with input use (other than water
source or tractor usage) per hectare as dependent variables. Panel B of Figure 7 docu-
ments the associated results. Farmers may not achieve potential paddy yields because
they are under or overusing critical inputs such as fertilizer and other agrochemicals.
We observe that in treated villages, after the intervention, farmers using rainfed farming
differentially increased the use of fertilizers and pesticides, and farmers using tractors
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differentially reduced the use of fertilizers and pesticides after the intervention.

(a) By Rainfed Farming Usage (b) By Tractor Usage

Panel A: Impact on Interaction with Extension Services

(c) By Rainfed Farming Usage (d) By Tractor Usage

Panel B: Impact on Other Input Uses

Figure 7: Mechanism for the effect of Agricultural Call Center Intervention

Notes: The reported triple-difference coefficients are from the specification (4), reported here with respect
to the corresponding outcome variables. The coefficients are reported with their corresponding 90 percent
confidence intervals. For each panel, the coefficients correspond to the interaction of the respective input
usage with the variables Phone Service in the Village and Post ACCI in the same regression. Phone Service
in the Village dummy measures whether the household’s community reported having phone service in
that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of
the Agricultural Call Center Intervention.

These findings are consistent with the fact that incorrect fertilizer use (for example,
urea) can be easily diagnosed by the color of leaves, and the remedies can be easily
and quickly distributed by experts from agricultural call centers (Islam and Beg, 2021).
Similarly, pest infestation can be easily visually diagnosable by farmers. For example,
rice blast, a common paddy fungal disease, manifests itself as large white and yellow
spots on the leaves. Evidence shows that farmers generally consult call center services
for advice on agrochemicals, as they are concerned about plant protection to avoid
severe damage due to pest attacks (Kumar et al., 2021). In addition, panel B of Figure 7
shows that farmers using tractors differentially spent more on seeds after the interven-
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tion. Interestingly, we also find evidence of longer work hours for family labor after
intervention. These results are consistent with an intensification of input use on farms
after the intervention.

5 Heterogeneity Analysis: The Role of Networks

5.1 Construction of Geographic Networks

We now turn to understanding the role of social networks in amplifying the impact of
the intervention. To investigate the role of social networks in enhancing the effect of
ICTs in the transmission of information related to efficient use of resources, we need
to first construct these networks. Ideally, data on social interactions are collected and
used for this purpose.17 In scenarios where the data on social interactions are not
available, geographic proximity can be used as a proxy measure of these interactions.
The rationale behind this approach lies in the ease of communication between agents
who live close to each other (Goldenberg and Levy, 2009; Helsley and Zenou, 2014; Kim
et al., 2023). This is the approach that we follow for our analysis.

Using the geographic location of the households surveyed in BIHS, we construct an
undirected network of households based on the geographic distance between these
households. In our constructed network, each pair of households is considered to be
connected as long as they live within 5 kilometers of each other’s house, irrespective
of whether they are part of the same community. This allows for cross-community
connections that help us study the spillover effect of the intervention between com-
munities. Figure 8 presents the geographic network that we constructed. The nodes
represent the households in our sample as documented in the baseline, colored by their
respective administrative divisions. The edges between each pair of nodes represent
the geographic connection between the pair of households, with no edges between the
households that are not geographically close to each other. Nodes with more edges are
more central in the network and are in the center of the figure. In contrast, nodes with
fewer edges are less central and are in the periphery. The less central nodes represent
households that are geographically remote from most of the other households and are
probably the main expected beneficiaries of the intervention.

The role of geography in economic development is well documented in the literature
(Donaldson and Hornbeck, 2016; Aggarwal, 2018; Asher and Novosad, 2020; Banerjee
et al., 2020; Shamdasani, 2021) and central households are already well connected to
benefit from the transmission of information from their social connections. However,
most remote households lack the number of connections required for effective knowl-

17For details on how to collect data on social networks, one can consult: https://blogs.worldbank.
org/en/impactevaluations/how-to-collect-data-on-social-networks-
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edge diffusion. 18 Thus, we expect the remote households to benefit more from the
intervention. This is the hypothesis that we test below using the specification (5).

Figure 8: Geographic Distance Network

Notes: The figure displays the undirected geographic distance network using the Bangladesh Integrated
Household Survey (BIHS) data from the baseline (2011). The nodes represent households, and the edges
represent the geographic connection between two households. Any pair of households are assumed to be
geographically connected if they live within 5 kilometers of each other.

For our analysis of heterogeneous network effects, we use Betweenness Centrality as
the measure of network centrality. The measure captures the importance of a node in
terms of connecting with other nodes in a network and accessing information from
them (Jackson, 2010; Bloch et al., 2023).19 The measure is widely used in the literature on
network-based interventions as a measure of the centrality of nodes (see, for example,

18Beaman et al. (2021) documents that multiple connections are required for effective diffusion of
knowledge.

19Let Nk
ij denote the number of geodesic paths between nodes i and j that pass through node k in
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Banerjee et al., 2013; Beaman and Dillon, 2018; Beaman et al., 2021). For our purpose, it
is particularly useful since the nodes with the highest betweenness centrality are often
considered the gatekeepers of information.21 So, by investigating whether households
with lower betweenness centrality differentially benefit from ACCI, we effectively
study whether the intervention is successful in helping the information needs of the
population that finds it particularly difficult to obtain such information.

5.2 Empirical Specifications

Do the effect of ACCI vary differentially depending on the centrality of the geo-
graphic network?
To answer the above question, we use the following triple differences specification that
takes advantage of the household-level variation in network centrality:

Outcomeijcdpst = β0 + β1Phone Servicecdt + β2Phone Servicecdt × Inverse Betweennessicd

+ β3Phone Servicecdt × Post ACCIt + β4Inverse Betweennessicd × Post ACCIt

+ β5Phone Servicecdt × Inverse Betweennessicd × Post ACCIt + β6Xijcdt

+ σi + δp + ϕs + λt + ψd × λt + µijcdpst, (5)

where Inverse Betweennessicd = 1
1+Betweenness Centralityicdt

captures the inverse of between-
ness centrality for household i from community c of division d. The objective of this
specification is to understand the differential effect of ACCI post-intervention by geo-
graphic proximity away from geographically central households.

The importance of extension in reaching geographically remote households is well
emphasized in the policy domain (Abate et al., 2020; Maulu et al., 2021; Lee et al., 2023).
Whether an agricultural extension intervention is successful in reaching geographically
remote households is an important indicator of the effectiveness of the intervention,
and the role of ICTs is well recognized in this regard (Westermann et al., 2018; Fabregas
et al., 2019b). The specification (5) captures this through the coefficient β5. A negative
value of this coefficient for the Inefficiency outcome variable would indicate that the
intervention is successful in improving the efficiency of households living further from
the central households (i.e., those living in the periphery of their networks). However,

any given network.20 Also, denote the total number of geodesic paths from i to j to be Nij for the same
network. Then, the betweenness centrality of node k in that network is defined as:

Betweenness Centralityk =
∞

∑
∀i,j s.t.i ̸=j and k/∈{i,j}

(Nk
ij

Nij

)
,

with
Nk

ij
Nij

= 0 if Nij = 0.
21Source: https://visiblenetworklabs.com/2022/09/30/network-science-a-reference-guide/.
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the specification does not help us understand the potential spillovers of the intervention
over network ties, which brings us to our next question.

Do the effect of ACCI vary differentially by dyadic geographic distances?
Finally, we use the dyadic data frame of the geographic networks to study the spillover
effect of the intervention within geographic networks in the post-intervention period.
Consider two households i and i′. We want to capture how the impact of ACCI on the
community c′ of household i′ post-intervention differentially affects household i’s inef-
ficiency by the distance between the households.22 We use the following specification
for this purpose:

Outcomeicdst = γ0 + γ1Phone Servicec′t + γ2Phone Servicec′t × Inverse Distanceii′

+ γ3Phone Servicec′t × Post ACCIt + γ4Inverse Distanceii′ × Post ACCIt

+ γ5Phone Servicec′t × Inverse Distanceii′ × Post ACCIt

+ γ6Xijcdt + σii′ + ϕs + λt + ψd × λt + νicdst, (6)

where Outcomeicdst captures the outcome in the use of all agricultural plots used by
household i from community c of division d at year t for season s, Phone Servicec′t

is a dummy indicating whether the community c′ (the community of household i′)
reported having phone service at year t, and Inverse Distanceii′ represents the inverse
of geographic distance between households i and i′, captured at the baseline.

The specification includes σii′ , ϕs, and λt, as pair, season, and year fixed effects,
respectively. We also include the interaction of the fixed effect of division ψd with the
fixed effect of year λt to control for the characteristics that vary over time at the level of
division of the household i. Our coefficient of interest is γ5, which captures how much
the post-intervention impact of ACCI in the community of household i′ differentially
affects the outcome of the household i, lower the distance between households i and
i′. We expect this coefficient to be negative for the Inefficiency outcome variable if the
network spillovers of the program reduce inefficiency.

5.3 Results

Table 3 documents the potential for ACCI to reach agents in geographically remote
areas. For this purpose, we use the specification (5), which exploits the variation in the
centrality of households in the geographic network, in addition to the spatiotemporal
variation in access to phone services and the temporal variation in the timing of the
intervention. We causally interpret the coefficient on only the triple interaction terms.

22This analysis focuses on the balanced panel of households to avoid having the scenario where one of
the households is not surveyed.

25



The results in columns (1) and (2) show that the agricultural inefficiency differentially
decreased and the actual yield differentially increased for geographically remote farmers
that have a lower betweenness centrality. However, columns (3) and (4) show that this
impact is not driven by changes in the use of rainfed farming and tractors, as the
associated coefficients are small and statistically insignificant. Given the variation
in the Inverse Betweenness Centrality of farmers in the baseline (around 0.3 standard
deviations), the differential impact of the intervention on the reduction of inefficiency
in our sample is around 0.1 standard deviations. For the average farmer in our sample,
this corresponds to a 13 percentage points (or 0.3 standard deviations) increase in actual
yield.

Table 3: Differential Effect of the Agricultural Call Center Intervention by Geographic Network Centrality on Plot-level Agricultural Outcomes

(1) (2) (3) (4)
Inefficiency Actual Yield Used Rainfed Used

Farming Tractor

Phone Service in the Village -30.551 -3.942 -0.116* -0.084
(22.565) (272.676) (0.064) (0.069)

Phone Service in the Village × Post ACCI 30.117 -378.156* -0.005 -0.033
(19.934) (201.094) (0.049) (0.054)

Inverse Betweenness Centrality × Phone Service in the Village 31.452 -197.648 0.124* 0.082
(26.469) (307.141) (0.072) (0.079)

Inverse Betweenness Centrality × Post ACCI 24.934 -442.374*** 0.005 -0.063
(17.624) (151.379) (0.036) (0.043)

Inverse Betweenness Centrality × Phone Service in the Village × Post ACCI -54.567** 578.403** 0.031 0.010
(22.727) (226.715) (0.056) (0.059)

Mean Baseline Outcome 29.625 3582.026 0.321 0.071
(SD) (208.816) (1734.7) (0.467) (0.257)

Observations 27064 27745 27745 27482

R2 0.400 0.630 0.673 0.558

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. Phone Service in the Village dummy measures
whether the household’s community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is
post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = 1

1+Betweenness Centrality captures the inverse of geographic
betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions
use data from plots that are within 2 kilometers of their respective household locations. All regressions include year and season-fixed effects, time-varying
controls, household, crop type, and the interaction of the division with year-fixed effects. Time-varying controls include the dummy capturing whether the
household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household’s village as
reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

The above results show that although the program was successful in reaching remote
farmers, decreasing the inefficiency associated with their agricultural production and
improving their yield, this is not driven by farmers adjusting their use of rainfed
farming and tractors. Thus, the results appear to be driven by the more efficient use of
the same mixture of rainfed farming and tractors. This indicates the importance of ACCI
in communicating information on the efficient use of existing inputs and benefiting
geographically remote farmers, who do not have access to such information otherwise.

Furthermore, Table 4 reports the potential amplification of the program’s impacts
through social spillovers. Using the specification (6), here we investigate whether the
outcomes of household i are differentially affected if the community of household i′

receives ACCI, as the distance between the pair of households decreases. It is impor-
tant to note that this specification controls for Phone Service in the Village of i dummy
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measuring whether the community of household i reported having phone service in
the year interacted with the Post ACCI dummy. This control variable partials out the
post-intervention impact of ACCI on the household i’s own community. Therefore, we
can interpret the triple interaction terms as the cross-community spillover effect of the
intervention.

Table 4: Differential Effect of the Agricultural Call Center Intervention by Dyadic Geographic Distances on Household-level Agricultural Outcomes

(1) (2) (3) (4)
Inefficiency Actual Yield Used Rainfed Used

Farming Tractor

Phone Service in the Village of i′ -63.407** -96.802 0.026 -0.090***
(24.589) (597.956) (0.032) (0.034)

Phone Service in the Village of i′ × Post ACCI 38.906* -455.164 -0.038* -0.034*
(20.630) (536.658) (0.022) (0.020)

Inverse Distance between i and i′ × Phone Service in the Village of i′ 60.702 -667.826 -0.012 0.163
(45.190) (1667.954) (0.095) (0.109)

Inverse Distance between i and i′ × Post ACCI 102.427*** -3623.542** -0.184*** -0.033
(35.110) (1563.588) (0.042) (0.038)

Inverse Distance between i and i′ × Phone Service in the Village of i′ × Post ACCI -119.823*** 4161.021** 0.144** 0.086
(46.327) (1912.950) (0.064) (0.054)

Mean Baseline Outcome 29.625 3582.026 0.321 0.071
(SD) (208.816) (1734.7) (0.467) (0.257)

Observations 60724 60724 60724 60667

R2 0.243 0.875 0.658 0.597

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors multi-way clustered at the household i and household i′ level are in parentheses. Phone Service in
the Village of i′ dummy measures whether the community of household i′ reported having phone service in that year and Post ACCI is the time dummy capturing
whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Distance between i and i′ = 1

1+Distance between i and i′ captures the inverse
of geographic distance between households i and i′ measured at the baseline, which is omitted at the level as the regressions include the pair fixed effects. All
regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include year and season-fixed effects, time-varying
controls, pair-fixed effects, and the interaction of the division of household i with year-fixed effects. Time-varying controls include the total number of plots owned by
i, the total number of plots operated by them, whether i has an agricultural input subsidy card, the weather of household i’s village as reflected by the minimum and
maximum temperature of the year (in °C) and average yearly rainfall (in mm), and Phone Service in the Village of i dummy measuring whether i’s community reported
having phone service in the year interacted with the Post ACCI dummy.

Columns (1) and (2) show that the spillover significantly reduces inefficiency and
increases actual yield, in line with our expectations. However, in terms of inputs, we
only observe significant impacts on the use of rainfed farming and not on the use of
tractors, as documented in columns (3) and (4). The average distance between each pair
of households in our sample is around 3.8 kilometers (with a standard deviation of 2.8),
which corresponds to around 0.3 units in our Inverse Distance measure (with a standard
deviation of 0.2). Given these numbers, the differential impact of the intervention in the
community of an average household i′ on the inefficiency of another average household
i in our sample is a decrease of approximately 0.2 standard deviations. For all farmers in
our sample, this results in a 0.1 standard deviation decrease in inefficiency. The decrease
also corresponds to a 0.7 standard deviation (or 33 percentage points) increase in actual
yield and a 13 percentage points increase in the probability of adopting rainfed farming
for an average farmer. These results document large cross-community spillovers of
the intervention. These results are consistent with the evidence of community-based
spillover effects in ICT-driven extension programs (Fabregas et al., 2019b,a).
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6 Robustness Checks

We perform a series of robustness checks to ensure that the unobservables and pecu-
liarities of the data do not drive our results. We summarize them below in three broad
categories, postponing the detailed results to Appendix D for those interested.

6.1 Addressing Measurement Errors in the Inefficiency Variable

In subsection 3.2, we have noted that, in our data, many agricultural plots have an
actual yield greater than the potential yield, resulting in a negative inefficiency measure.
We discussed three possible reasons behind this phenomenon. First, farmers could
potentially compensate for poorer natural endowments/lack of irrigation infrastruc-
ture/mechanization by overusing other inputs such as fertilizer and pesticides. Our
results in Section 4.2 provide evidence in favor of this possibility. In the Appendix Table
D.6, we address the associated concern by documenting the robustness of our estimates
after controlling for other input usage.

The second reason for a negative inefficiency measure is the possible measurement
error in capturing high-yielding input usage, which is proxied by tractor usage informa-
tion in our analysis. To address this issue, we document the robustness of our estimates
for the use of fertilizer instead of tractor usage as an indicator of high-yielding input.
We report this in the Appendix Table D.5.

Finally, we also argued that there may be measurement errors in capturing the
heterogeneity in land productivity using the average potential yield, as given in the
GAEZ data. As noted in subsection 3.2, we check the robustness of our estimates to
this error by measuring the plot-level inefficiency as the percentage difference between
the actual and the 90th percentile plot-level potential yield drawn from a Frećhet
distribution. Appendix Table D.7 documents the robustness of our results to this
alternative measure of inefficiency.

6.2 Placebo and Falsification Tests

Although our benchmark estimates are encouraging, there is the possibility that they are
correlated with other changes in the village during the post-intervention period. One
way of testing the robustness of our estimates is to generate a placebo intervention. We
do that by re-coding the post-ACCI dummy to be 1 for the second round and limiting
the sample to only the first two rounds of the BIHS data. Given that the intervention was
actually scaled up after June 2014, we should not see an effect prior to the intervention
being fully implemented.23

23While the intervention was launched in June 2014, the recall period of the second round of the BIHS
was from December 1, 2013, to November 30, 2014.
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Appendix Table D.1 presents the estimates from the placebo test. Estimates on the
double interaction term in columns (1) and (2) are small in magnitude and statistically
insignificant. Similarly, the estimates from the triple interactions are mostly statistically
insignificant and of the opposite sign (columns (3) and (4)). More importantly, the
estimates for the triple interactions for the outcome inefficiency (our main outcome of
interest) are statistically insignificant. Hence, our main findings of this specification
disappear when we use the placebo intervention, providing support in favor of the
credibility of our approach. Similar results are documented in the Appendix Table D.13
and D.14, confirming the credibility of our network heterogeneity analysis through
placebo tests.

We perform additional tests to see whether we can recreate the results we observe
in the triple difference specification for the outcome variable Inefficiency in Table 3 if
we randomly shuffle a household’s rainfed farming and tractor use status. We do
such a random shuffling 100 times, collecting the estimates from the triple difference
specification each time. A widespread presence of statistically significant estimates with
this shuffled input usage will signal that the triple-difference specification is picking up
spurious effects, probably driven by other correlated factors. Appendix Figures D.1a
and D.1b plot the estimates for the triple difference coefficients (with Inefficiency as the
outcome variable) with 90% confidence intervals from this exercise. The figures show
no systematic pattern in these coefficient estimates and most of them are statistically
indistinguishable from zero.

We also performed a similar falsification exercise with randomly shuffled Inverse
Betweenness Centrality and randomly shuffled Inverse Distance for specifications (5) and
(6), respectively. As we document in the Appendix Figures D.2, such an exercise also
does not show a systematic pattern in the estimated coefficients.

6.3 Verifying Results for Sub-samples

We perform a series of other robustness checks to ensure that several peculiarities of
the data do not drive our results. First, we use household fixed effects in our preferred
specifications. This choice is driven by the fact that many plots in our data are observed
only once. As plot-fixed effects require the plot to be observed at least twice, using
plot-fixed effects would drop those plots that are observed only once. However, using
plot-fixed effects is probably better as it controls for all time-invariant observables
and unobservables at the plot level, which is better than controlling for time-invariant
observables and unobservables at the household level. Appendix Tables D.2 and D.9
document the robustness of our results using plot-fixed effects instead of the household
fixed effects, restricting the sample only to plots that are observed at least twice in the
data.
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Second, in order to ensure that households that are surveyed only once or twice are
not driving our results, we restrict our sample to households that are surveyed in all
three rounds. Appendix Tables D.3 and D.10 document the robustness of our results
with the balanced panel of households. Note that both this robustness check and the
one using plot-fixed effects instead of household-fixed effects were not performed for
regression (6), as it is a household-level regression that focuses on the balanced panel of
households.

Third, in the data, the tractor use information has many missing values in year 1.
One possible solution to this data issue is to use a separate indicator instead of using
tractor usage as an indicator of high-yield input. As mentioned in Section 6.1, we have
already done so by replacing tractor usage with higher than median fertilizer usage.
Another solution is to impute the tractor usage of year 1, using the tractor usage in the
following survey rounds. This is something we have done for our main analysis. If a
plot has been observed in all three rounds and reported that it had used a tractor in
both rounds 2 and 3, with a missing value of tractor usage in year 1, we have imputed
the tractor usage of year 1 to be "yes." On the other hand, we have imputed the tractor
usage of year 1 to be "no" if the plot has been observed in all three rounds and reported
that it had not used a tractor in both rounds 2 and 3. To ensure that this imputation is
not driving our results, we re-estimate our regressions using observations from survey
years 2 and 3 only. Appendix Tables D.4, D.10, and D.11 document the robustness of
our results excluding the observations from round 1.

Finally, to ensure that the change in community-level phone access after the intro-
duction of the intervention is not endogenously driving our results, we also check the
robustness of our results of our results fixing the community-level phone access at the
baseline. Appendix Tables D.8, D.15, and D.16 document these results. Our results hold
across all robustness checks and alternative specifications.

7 Summary and Concluding Remarks

Does ICT-based provision of agricultural extension services help improve agricultural
productivity in poor or developing countries? Our paper tries to answer this question
for rural Bangladesh, where the majority of the agriculture-dependent population is
engaged in the production of rice crops. Although Bangladesh’s geography is suitable
for rice cultivation, yields are low in the country relative to other major rice producing
countries. In this context, we investigate the role of an Agricultural Call Center Inter-
vention (ACCI) in reducing the inefficiency in rice production due to non-geographical
factors. The novelty of our approach lies in the fact that we look at the impact of
this intervention after controlling for the effects of geographical factors by using a
micro-geographic dataset.
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We document that the intervention was effective in reducing plot-level inefficiency in
rice production in those villages that had access to phone services. With the ability to
provide farmer-specific and need-based extension services in the form of immediate
expert advice, ACCI was able to help those farmers differentially more who were using
rainfed water supply instead of irrigation. This reduction in inefficiency is found to be
mediated by the increased intensity of the use of various inputs on farms.

We further assess the heterogeneity in the impact of ACCI by geographic network
centrality of the households, as the need for extension services varies by the house-
holds’ positions in the network. Absent any intervention, one would expect that more
central and well-connected households could better access pertinent agricultural infor-
mation, whereas access remains difficult for remotely located households. Therefore,
any ICT-based extension service should enable remotely located households to access
information. Our results provide support in favor of this intuitive prediction. We show
that there was a differentially higher reduction in the inefficiency of remote households’
production after the intervention.

Although our estimates are not directly comparable to existing experimental evidence,
we find that our estimates are larger in magnitude. That could be either because we
consider a different dependent variable that explicitly accommodates the heterogeneity
in natural climatic conditions and micro-geography or because of spillovers. Evidence
from the literature suggests that the spillover effects of ICT-based extension programs
are important. We also provide evidence in support of such spillovers.

Given the robustness of our results to several robustness checks reported in Section
6 and Appendix D, we can confidently claim positive causal impacts of ICT-based
extension services on small-scale farmers, who also happen to be more dependent on
rainfed farming methods. Thus, policymakers can reliably use ICT-based extension
services for their extension efforts in regions where mobile phone technologies have
been widely disseminated. As suggested by our results, this can also increase access to
information for remotely located or socially excluded households, increasing overall
welfare.

Although we performed several robustness and falsification tests to assess the validity
of our results, some limitations remain. First, our analysis captures only the average
effects of the program, akin to an intention-to-treat (ITT) estimate. Although we have
data on household-level mobile phone ownership, this variable is likely endogenous.
Moreover, the survey reports the total number of mobile phones in the household,
which may include devices owned by non-resident members working in areas with
better network coverage. One potential refinement of our estimation strategy would
involve taking advantage of the geographic and temporal expansion of Bangladesh’s
mobile tower network. However, we currently lack access to detailed location-specific
time series data on tower deployment. We are actively pursuing this data and plan to
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explore this direction in future research.
Another limitation of our analysis is that for the purpose of documenting the role

of networks in amplifying the impact of ACCI, we rely on geographic networks as
a proxy for social networks. Although geography is documented to be an important
factor driving social interactions (Kim et al., 2023), there is also evidence suggesting that
physical proximity is not a good proxy for social connections in some contexts (Beaman
et al. (2021)). Thus, it is important to interpret our results in terms of geographic
proximity and not overemphasize its implications for social proximity. A detailed
analysis of the importance of social interactions in driving the impact of ICT-based
interventions remains beyond the scope of this paper.

This paper adds to our understanding of the role of information friction in keeping
agricultural productivity low in poor and developing countries. Our analysis makes
clear that the availability of ICT-based agricultural extension services can significantly
alleviate inefficiency in agricultural production. Using different policy interventions
placed in different institutional contexts, it will be interesting to measure the extent
of inefficiency or misallocation caused by information frictions within the agricultural
sector and between sectors in an economy. We leave it as a potential future research
work in the burgeoning field of macro-development, which can build on our findings to
study the direct and indirect productivity costs of information frictions.
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Appendices

A Global Agro-Ecological Zones Dataset

The GAEZ dataset is jointly prepared by the Food and Agriculture Organization of the
United Nations (FAO) and the International Institute for Applied Systems Analysis
(IIASA).24 This dataset covers the entire land surface area of earth by dividing it into
equal-sized grid cells at 5 arc-minute resolution.25 It reports the average potential yield
for a set of crops in each grid cell which is the maximum attainable yield given the
natural inputs/endowments of the grid cell and the type of cultivation inputs assumed
for growing the crop.26 To calculate the potential yield, a crop-specific state-of-the-art
agronomic model is fed with the natural inputs, which include the standardized soil,
climate, and terrain conditions corresponding to the specific grid cell, and the type of
cultivation inputs, which include the water supply and the level of complementary
inputs usage.27 Water supply and complementary input levels are of two types - rainfed
and irrigated conditions for water supply, and low and high levels of complementary
inputs usage. Low-level inputs correspond to traditional subsistence-based farm man-
agement. There is no usage of chemical fertilizers or pesticides, and there is no farm
mechanization since all stages of production are labor-driven. Under high-level inputs,
the farming system is market-oriented, i.e., there is usage of high-yielding variety seeds,
fertilizers, pesticides, and machinery are used wherever possible. The labor intensity is
low and nutrient application is optimal.28 As a result, we know the potential yield of a
set of crops for four input combinations – rainfed-low, rainfed-high, irrigated-low and
irrigated-high – in each grid cell.

24Publicly available at https://gaez.fao.org/.
25The area of these cells map differently into sq-km. at different latitudes. For context, the average size

of a grid cell is around 81 sq-km. at the equator, while it is around 78 sq-km. in Bangladesh.
26GAEZ dataset reports potential yield at a 5 arc-minutes resolution cell by taking average of the

potential yields over 100 sub-cells at 30 arc-seconds resolution.
27Soil quality includes its depth, fertility, drainage, texture, and chemical composition. Climate

conditions include temperature, sunshine hours, precipitation, humidity, and wind speed. And, terrain
and topography include elevation and slope of the land surface (Adamopoulos and Restuccia, 2022).

28Though the GAEZ (v4) dataset provides potential yields for only two input levels - low and high,
there is also a third level mentioned in the model documentation on its website. This is the intermediate
level of inputs for which the potential yield information was also provided in the earlier versions of
the GAEZ dataset. Under the intermediate level, the farming system is only partially market-oriented,
with some focus still on subsistence production. Here, the farmers use some fertilizers, pesticides,
mechanization (some preliminary hand/animal/machine tools), and adopt some conservation measures
of weed control in contrast to minimum measures under low input level. We club together the low and
intermediate levels of inputs, under the low category. So that we can segregate all input choices under
only two levels - low and high.
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B Variation in potential yield within a GAEZ cell

The GAEZ dataset reports the average potential yield for each GAEZ cell at 5 arc-minute
resolution by averaging the potential yield of 100 subfields at 30 arc-second resolution.
Given the large size of a GAEZ cell, around 8000 hectares on average for Bangladesh,
there is substantial variation in land productivity within a GAEZ cell. To account for this
heterogeneity, we follow the approach adopted in Dasgupta and Rao (2022). Assume
a continuum of parcels, indexed by ω, spanning a GAEZ cell i such that the potential
productivity of parcel ω in producing rice under a given input combination c is given
by Aic(ω). If the parcel-level potential yield follows an i.i.d Frećhet distribution, then
the cdf is given by

Prob(Aic(ω) ≤ a) = exp
(
− γθ(Aic)

θa−θ
)

. (7)

Aic is the GAEZ-reported average potential yield for cell i under input combination c,
θ is the shape parameter which denotes the inverse of the degree of land heterogeneity in
a GAEZ cell, and γ is a mathematical Gamma function based normalization parameter
which ensures that E[Aic(ω)] = Aic. We adopt the calibrated value of shape parameter
θ = 1.658, as in Sotelo (2020).

Figure B.1: Frequency distribution of parcel-level potential yields within a GAEZ cell
of size 7971 hectares. The input combination corresponds to rainfed water supply and
low level of complementary inputs. The parcel size is kept at 5 hectares. Two outlier
observations greater than 10000 kg/ha are not shown in this plot.

For our purpose, we operationalize the above by dividing each GAEZ cell into discrete
parcels of equal size. To calculate parcel-level potential yields, we take an average of
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500 independent draws from the above distribution in equation (7). Figure B.1 plots
the frequency distribution of the potential yields at the parcel level in a GAEZ cell
whose average potential yield for rainfed water supply and low complementary inputs
was reported at 2546 kg per hectare in the GAEZ dataset, while its mean potential
yield at the parcel level is around 2563 kg per hectare. It is important that the average
parcel-level potential yield comes close to GAEZ-reported one so that our assumption
of Frećhet distribution is justified. In our simulations, we find that to be the case. The
90th percentile potential yield is 15% higher than the GAEZ-reported potential yield,
and it is 34% higher than the 10th percentile potential yield, capturing well the land
heterogeneity discussed above.
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C Additional Results

Table C.1: Evolution of Phone Services by Division over the Survey Years

Survey Year Barisal Chittagong Dhaka Khulna Rajshahi Rangpur Sylhet Observations

2011 0.566 0.272 0.454 0.561 0.495 0.276 0.045 11661
(0.500) (0.445) (0.498) (0.496) (0.500) (0.447) (0.206)

2015 0.517 0.476 0.497 0.652 0.515 0.328 0.102 9417
(0.500) (0.500) (0.500) (0.476) (0.500) (0.470) (0.303)

2018 0.587 0.484 0.497 0.678 0.528 0.264 0.091 7689
(0.493) (0.500) (0.500) (0.467) ( 0.499) (0.441) (0.287)

Observations 1739 2266 9044 3336 6021 3571 2790 28767

Notes: Based on the community survey module for the third round of BIHS. The table reports the means, with standard deviations in
parentheses.

Table C.2: Effect of the ACCI on Plot-level Agricultural Inefficiency for Different Agricultural Seasons

(1) (2) (3) (4)
All Boro Aman Aus

Phone Service in the Village -5.640 -6.100 14.251 -267.305***
(11.410) (9.134) (14.798) (59.057)

Phone Service in the Village × Post ACCI -15.634** 0.355 -23.056*** -57.171
(6.794) (7.302) (8.855) (38.097)

Mean Baseline Inefficiency 29.625 -13.987 62.617 98.165
(SD) (208.816) (112.529) (248.972) (313.016)

Observations 27298 12407 12959 1326

R2 0.399 0.440 0.567 0.563

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the community level are in
parentheses. The dependent variable for all regressions is the Inefficiency of Agricultural Yield. Phone Service
in the Village dummy measures whether the household’s community reported having phone service in
that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of
the Agricultural Call Center Intervention. All regressions use data from plots that are within 2 kilometers
of their respective household locations. All regressions include year fixed effects, time-varying controls,
household, crop type, and the interaction of the division with year fixed-effects. Column (1) also includes
the season-fixed effects. Time-varying controls include the dummy capturing whether the household
owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the
weather of the household’s village as reflected by the minimum and maximum temperature of the year (in
°C) and average yearly rainfall (in mm). Mean Baseline Inefficiency represents the average inefficiency of all
plots calculated in the baseline year (2011) using a total of 12901 observations (6058 from Boro, 5762 from
Aman, and 1081 from Aus season).
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Table C.3: Differential Effect of the ACCI by Input Use on Plot-level Agricultural Inefficiency for Different Agricultural Seasons

(1) (2) (3) (4)
All Boro Aman Aus

Phone Service in the Village -8.381 1.822 -7.613 -238.158**
(7.746) (5.739) (13.378) (93.768)

Phone Service in the Village × Post ACCI -1.963 -1.618 4.123 13.386
(4.048) (3.812) (9.158) (43.477)

Used Rainfed Farming -0.423 -6.672 -33.982*** -62.372
(7.245) (10.609) (9.186) (40.998)

Used Tractor 230.904*** 149.831*** 284.011*** 302.257***
(11.984) (9.047) (23.275) (37.980)

Used Rainfed Farming × Phone Service in the Village 24.223** 0.328 40.210*** 127.860**
(10.750) (15.717) (12.581) (61.676)

Used Tractor × Phone Service in the Village 16.643 5.204 -12.475 -59.311
(30.384) (12.997) (45.564) (44.195)

Used Rainfed Farming × Post ACCI -1.518 -2.933 19.137 1.035
(9.273) (13.369) (13.102) (41.723)

Used Tractor × Post ACCI -63.520*** -18.985 -101.701*** 33.067
(22.440) (28.523) (37.332) (52.499)

Used Rainfed Farming × Phone Service in the Village × Post ACCI -43.539*** 1.369 -49.974*** -46.888
(12.223) (19.988) (17.216) (62.714)

Used Tractor × Phone Service in the Village × Post ACCI -15.905 31.728 -11.730 -60.479
(39.255) (42.190) (70.979) (65.364)

Mean Baseline Inefficiency 29.625 -13.987 62.617 98.165
(SD) (208.816) (112.529) (248.972) (313.016)

Observations 27298 12407 12959 1326

R2 0.468 0.516 0.634 0.651

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. The dependent variable
for all regressions is the Inefficiency of Agricultural Yield. Phone Service in the Village dummy measures whether the household’s community
reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of
the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used rainfed
farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household
locations. All regressions include year fixed effects, time-varying controls, household, crop type, and the interaction of the division with year
fixed-effects. Column (1) also includes the season-fixed effects. Time-varying controls include the dummy capturing whether the household
owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household’s village
as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).
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Table C.4: Differential Effect of the ACCI by Geographic Network Centrality on Plot-level Agricultural Inefficiency for Different Agricultural Seasons

(1) (2) (3) (4)
All Boro Aman Aus

Phone Service in the Village -30.551 -29.350 19.319 -268.568***
(22.565) (24.220) (38.955) (70.980)

Phone Service in the Village × Post ACCI 30.117 40.706** 9.872 -95.334
(19.934) (17.835) (33.480) (106.663)

Inverse Betweenness Centrality × Phone Service in the Village 31.452 30.563 -5.512 0.000
(26.469) (25.445) (45.959) (.)

Inverse Betweenness Centrality × Post ACCI 24.934 15.204 15.082 -70.142*
(17.624) (12.061) (31.853) (38.066)

Inverse Betweenness Centrality × Phone Service in the Village × Post ACCI -54.567** -47.466** -40.114 51.438
(22.727) (20.303) (36.905) (109.093)

Mean Baseline Inefficiency 29.625 -13.987 62.617 98.165
(SD) (208.816) (112.529) (248.972) (313.016)

Observations 27064 12274 12882 1308

R2 0.400 0.440 0.567 0.564

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. The dependent variable for all
regressions is the Inefficiency of Agricultural Yield. Phone Service in the Village dummy measures whether the household’s community reported having
phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center
Intervention. Inverse Betweenness Centrality = 1

1+Betweenness Centrality captures the inverse of geographic betweenness centrality for the household at
the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions use data from plots that are within 2
kilometers of their respective household locations. All regressions include year fixed effects, time-varying controls, household, crop type, and the
interaction of the division with year fixed-effects. Column (1) also includes the season-fixed effects. Time-varying controls include the dummy
capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather
of the household’s village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm). Mean
Baseline Inefficiency represents the average inefficiency of all plots calculated in the baseline year (2011) using a total of 12901 observations (6058 from
Boro, 5762 from Aman, and 1081 from Aus season).

Table C.5: Differential Effect of the ACCI by Dyadic Geographic Distances on Plot-level Agricultural Inefficiency for Different Agricultural Seasons

(1) (2) (3) (4)
All Boro Aman Aus

Phone Service in the Village of i′ -63.407** -17.071** -107.001* -260.613**
(24.589) (7.520) (55.612) (115.204)

Phone Service in the Village of i′ × Post ACCI 38.906* 27.073*** 77.000 -141.795
(20.630) (10.382) (53.077) (123.533)

Inverse Distance between i and i′ × Phone Service in the Village of i′ 60.702 59.058** 97.236 135.022
(45.190) (23.313) (85.562) (215.601)

Inverse Distance between i and i′ × Post ACCI 102.427*** 121.800*** 142.425* -71.996
(35.110) (43.916) (84.406) (57.950)

Inverse Distance between i and i′ × Phone Service in the Village of i′ × Post ACCI -119.823*** -141.057*** -152.682 161.632
(46.327) (49.001) (107.831) (382.763)

Mean Baseline Inefficiency 29.625 -13.987 62.617 98.165
(SD) (208.816) (112.529) (248.972) (313.016)

Observations 60724 29085 26670 1312

R2 0.243 0.523 0.423 0.731

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors multi-way clustered at the household i and household i′ level are in parentheses. The dependent
variable for all regressions is the Inefficiency of Agricultural Yield for i. Phone Service in the Village of i′ dummy measures whether the community of household i′

reported having phone service in that year and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call
Center Intervention. Inverse Distance between i and i′ = 1

1+Distance between i and i′ captures the inverse of geographic distance between households i and i′ measured
at the baseline, which is omitted at the level as the regressions include the pair fixed effects. All regressions use data from plots that are within 2 kilometers of
their respective household locations. All regressions include year fixed effects, time-varying controls, pair fixed effects, and the interaction of the division of
household i with year fixed-effects. Column (1) also includes the season-fixed effects. Time-varying controls include the total number of plots owned by i, the
total number of plots operated by them, whether i has an agricultural input subsidy card, the weather of household i’s village as reflected by the minimum and
maximum temperature of the year (in °C) and average yearly rainfall (in mm), and Phone Service in the Village of i dummy measuring whether i’s community
reported having phone service in the year interacted with the Post ACCI dummy. Mean Baseline Inefficiency represents the average inefficiency of all plots
calculated in the baseline year (2011) using a total of 12901 observations (6058 from Boro, 5762 from Aman, and 1081 from Aus season).

43



Ta
bl

e
C

.6
:F

ul
ls

et
of

M
ec

ha
ni

sm
R

es
ul

ts
C

ap
tu

ri
ng

D
iff

er
en

ti
al

Ef
fe

ct
of

th
e

A
C

C
Ib

y
In

pu
tU

se
on

Pl
ot

-l
ev

el
U

sa
ge

of
O

th
er

In
pu

ts

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

Fe
rt

ili
ze

r
M

an
ur

e
Pe

st
ic

id
e

C
os

to
f

C
os

to
f

C
os

to
f

H
ou

rs
of

H
ou

rs
of

U
se

U
se

U
se

M
ac

hi
ne

Se
ed

s
La

bo
r

Fa
m

ily
La

bo
r

H
ir

ed
La

bo
r

Ph
on

e
Se

rv
ic

e
in

th
e

V
ill

ag
e

43
.5

47
*

-8
.9

77
57

.7
49

-6
.4

51
80

3.
21

6*
**

38
56

.7
36

**
*

46
.8

02
12

4.
40

7*
**

(2
2.

38
1)

(1
55

.3
54

)
(1

80
.4

87
)

(2
80

.5
58

)
(2

88
.2

03
)

(1
18

5.
01

4)
(3

6.
23

1)
(3

2.
98

5)

Ph
on

e
Se

rv
ic

e
in

th
e

V
ill

ag
e
×

Po
st

A
C

C
I

-1
6.

29
1

-7
7.

93
4

38
0.

08
1*

*
-1

94
.8

48
-2

54
.8

91
-1

64
1.

70
2

-1
30

.5
67

**
*

-3
6.

40
2

(1
7.

41
1)

(1
62

.6
84

)
(1

71
.4

96
)

(2
37

.5
45

)
(2

59
.2

32
)

(1
07

8.
96

7)
(2

6.
04

6)
(2

3.
33

3)

U
se

d
R

ai
nf

ed
Fa

rm
in

g
-3

6.
07

1*
**

-8
1.

62
4

-1
40

.9
51

*
42

.5
05

-1
79

.7
67

-4
94

.5
67

-3
1.

69
9*

*
-2

5.
28

3
(1

1.
22

3)
(9

1.
41

8)
(7

7.
17

0)
(1

29
.8

81
)

(1
43

.4
12

)
(5

86
.8

30
)

(1
4.

60
1)

(1
5.

73
2)

U
se

d
Tr

ac
to

r
-2

4.
55

9*
39

8.
81

7*
*

9.
50

1
30

.6
28

13
5.

67
5

95
4.

82
7

7.
03

9
11

.9
30

(1
3.

47
4)

(1
60

.4
45

)
(1

21
.5

17
)

(2
43

.2
24

)
(2

68
.5

49
)

(9
08

.5
62

)
(3

5.
32

3)
(2

5.
48

5)

U
se

d
R

ai
nf

ed
Fa

rm
in

g
×

Ph
on

e
Se

rv
ic

e
in

th
e

V
ill

ag
e

-6
0.

97
0*

**
-1

0.
20

3
-1

82
.6

86
*

-4
86

.6
40

**
-2

7.
27

7
-9

50
.9

14
-5

6.
04

2*
*

-3
5.

50
2*

(1
3.

73
6)

(1
30

.5
63

)
(1

08
.8

58
)

(2
09

.1
62

)
(1

99
.9

81
)

(7
39

.6
82

)
(2

3.
58

5)
(1

9.
59

4)

U
se

d
Tr

ac
to

r
×

Ph
on

e
Se

rv
ic

e
in

th
e

V
ill

ag
e

44
.1

27
**

7.
13

7
28

0.
45

7
11

82
.6

82
**

*
-5

27
.3

34
12

72
.3

50
-9

5.
26

5*
*

23
.7

66
(2

1.
82

8)
(2

68
.2

38
)

(2
53

.3
35

)
(3

95
.8

14
)

(4
13

.4
06

)
(1

57
3.

77
2)

(4
8.

27
4)

(4
2.

94
0)

U
se

d
R

ai
nf

ed
Fa

rm
in

g
×

Po
st

A
C

C
I

2.
06

2
30

3.
33

6*
*

-2
87

.7
83

**
-8

87
.3

87
**

*
-2

35
.4

44
-7

63
.3

01
3.

40
2

19
.7

60
(1

4.
18

8)
(1

28
.0

41
)

(1
35

.2
34

)
(2

25
.1

10
)

(2
11

.4
87

)
(9

22
.0

12
)

(2
0.

96
2)

(2
0.

07
6)

U
se

d
Tr

ac
to

r
×

Po
st

A
C

C
I

6.
99

2
-3

37
.4

45
32

3.
39

7
58

8.
25

3
-4

49
.9

32
-1

51
2.

26
1

-4
3.

05
5

-4
8.

54
3

(2
0.

46
5)

(2
99

.0
71

)
(2

56
.0

35
)

(4
37

.8
37

)
(4

31
.0

43
)

(1
71

9.
60

1)
(3

9.
09

9)
(4

7.
31

3)

U
se

d
R

ai
nf

ed
Fa

rm
in

g
×

Ph
on

e
Se

rv
ic

e
in

th
e

V
ill

ag
e
×

Po
st

A
C

C
I

37
.9

24
*

34
.1

57
35

5.
47

7*
46

4.
50

3
19

5.
94

1
51

9.
02

6
96

.0
34

**
*

28
.3

95
(2

1.
13

8)
(2

02
.1

03
)

(1
81

.3
30

)
(3

17
.5

83
)

(3
28

.7
69

)
(1

17
9.

35
8)

(3
3.

55
3)

(2
5.

68
8)

U
se

d
Tr

ac
to

r
×

Ph
on

e
Se

rv
ic

e
in

th
e

V
ill

ag
e
×

Po
st

A
C

C
I

-7
2.

06
6*

32
4.

25
9

-7
98

.2
31

*
-6

00
.4

74
15

89
.2

03
**

76
6.

08
7

13
4.

05
6*

-2
.4

04
(4

0.
90

1)
(4

84
.0

19
)

(4
13

.8
68

)
(7

75
.2

85
)

(7
02

.5
58

)
(2

77
6.

45
5)

(7
1.

33
3)

(6
8.

69
0)

M
ea

n
Ba

se
lin

e
O

ut
co

m
e

36
4.

69
5

10
19

.4
61

14
05

.9
86

49
33

.8
66

51
26

.1
87

14
36

4.
99

45
7.

97
9

46
7.

58
4

(S
D

)
(2

37
.5

95
)

(2
53

2.
45

5)
(1

80
9.

46
)

(3
12

8.
24

9)
(4

77
1.

41
6)

(2
06

49
.2

6)
(5

43
.8

23
)

(6
64

.4
11

)

O
bs

er
va

ti
on

s
20

62
9

20
62

9
20

62
9

20
62

9
27

72
2

20
62

9
20

62
9

20
62

9

R
2

0.
42

7
0.

40
2

0.
50

7
0.

38
0

0.
45

4
0.

47
4

0.
46

4
0.

40
4

N
ot

es
:*

p<
0.

10
,*

*
p<

0.
05

,*
**

p<
0.

01
.R

ob
us

ts
ta

nd
ar

d
er

ro
rs

cl
us

te
re

d
at

th
e

ho
us

eh
ol

d
le

ve
la

re
in

pa
re

nt
he

se
s.

A
ll

de
pe

nd
en

tv
ar

ia
bl

es
ar

e
in

pe
r-

he
ct

ar
e

te
rm

s.
Ph

on
e

Se
rv

ic
e

in
th

e
V

ill
ag

e
du

m
m

y
m

ea
su

re
s

w
he

th
er

th
e

ho
u

se
ho

ld
’s

co
m

m
u

ni
ty

re
p

or
te

d
ha

vi
ng

p
ho

ne
se

rv
ic

e
in

th
at

ye
ar

,a
nd

Po
st

A
C

C
Ii

s
th

e
ti

m
e

d
u

m
m

y
ca

p
tu

ri
ng

w
he

th
er

th
e

su
rv

ey
ye

ar
is

p
os

ti
nt

ro
d

u
ct

io
n

of
th

e
A

gr
ic

u
lt

u
ra

lC
al

lC
en

te
r

In
te

rv
en

ti
on

.U
se

d
R

ai
nf

ed
Fa

rm
in

g
an

d
U

se
d

Tr
ac

to
r

d
um

m
ie

s
ca

pt
ur

e
w

he
th

er
th

e
ho

us
eh

ol
d

us
ed

ra
in

fe
d

fa
rm

in
g

an
d

tr
ac

to
r

in
th

ei
r

pl
ot

,r
es

pe
ct

iv
el

y.
A

ll
re

gr
es

si
on

s
us

e
d

at
a

fr
om

pl
ot

s
th

at
ar

e
w

it
hi

n
2

ki
lo

m
et

er
s

of
th

ei
r

re
sp

ec
ti

ve
ho

us
eh

ol
d

lo
ca

ti
on

s.
A

ll
re

gr
es

si
on

s
in

cl
ud

e
ye

ar
an

d
se

as
on

-fi
xe

d
ef

fe
ct

s,
ti

m
e-

va
ry

in
g

co
nt

ro
ls

,h
ou

se
ho

ld
,c

ro
p

ty
pe

,a
nd

th
e

in
te

ra
ct

io
n

of
th

e
di

vi
si

on
w

it
h

ye
ar

fix
ed

-e
ff

ec
ts

.
Ti

m
e-

va
ry

in
g

co
nt

ro
ls

in
cl

ud
e

th
e

du
m

m
y

ca
pt

ur
in

g
w

he
th

er
th

e
ho

us
eh

ol
d

ow
ns

th
e

pl
ot

,a
du

m
m

y
ca

pt
ur

in
g

w
he

th
er

th
e

ho
us

eh
ol

d
ha

s
an

ag
ri

cu
ltu

ra
li

np
ut

su
bs

id
y

ca
rd

,a
nd

th
e

w
ea

th
er

of
th

e
ho

us
eh

ol
d’

s
vi

lla
ge

as
re

fle
ct

ed
by

th
e

m
in

im
um

an
d

m
ax

im
um

te
m

pe
ra

tu
re

of
th

e
ye

ar
(i

n
°C

)a
nd

av
er

ag
e

ye
ar

ly
ra

in
fa

ll
(i

n
m

m
).

44



Table C.7: Full set of Mechanism Results Capturing Differential Effect of the ACCI by Input Use on Household-level Extension Activities

(1) (2) (3) (4) (5)
Extension Access Extension Agent Reached Out to Extension Agent Extension Seeking

Dummy Visited Extension Services Advice Index Advice Index

Phone Service in the Village -0.013 0.018 0.018 0.034 0.032
(0.056) (0.044) (0.033) (0.032) (0.025)

Phone Service in the Village × Post ACCI 0.034 -0.023 -0.041 0.016 -0.032*
(0.038) (0.037) (0.030) (0.026) (0.018)

Used Rainfed Farming 0.005 -0.002 -0.000 0.006 -0.007
(0.013) (0.011) (0.012) (0.008) (0.008)

Used Tractor -0.060*** 0.007 -0.013 -0.000 0.002
(0.022) (0.021) (0.022) (0.015) (0.015)

Used Rainfed Farming × Phone Service in the Village -0.027 -0.012 -0.015 -0.008 0.003
(0.020) (0.018) (0.016) (0.013) (0.010)

Used Tractor × Phone Service in the Village 0.050 0.012 -0.001 -0.000 -0.012
(0.039) (0.047) (0.030) (0.032) (0.019)

Used Rainfed Farming × Post ACCI -0.038 0.016 -0.015 0.009 0.004
(0.027) (0.029) (0.024) (0.020) (0.015)

Used Tractor × Post ACCI 0.020 -0.019 0.077 0.030 0.029
(0.052) (0.070) (0.058) (0.053) (0.042)

Used Rainfed Farming × Phone Service in the Village × Post ACCI 0.123*** 0.018 0.064* 0.013 0.006
(0.041) (0.040) (0.034) (0.031) (0.021)

Used Tractor × Phone Service in the Village × Post ACCI -0.047 -0.028 -0.009 -0.074 0.038
(0.087) (0.096) (0.081) (0.070) (0.059)

Mean Baseline Outcome 0.256 0.117 0.074 0.074 0.037
(SD) (0.437) (0.321) (0.261) (0.230) (0.157)

Observations 27723 27689 27689 27723 27723

R2 0.541 0.534 0.555 0.544 0.559

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. Dependent variables in columns (1)-(3) represent dummies, whereas the dependent
variables in columns (4)-(5) are indices that take values between 0 and 1. Phone Service in the Village dummy measures whether the household’s community reported having phone service in that year,
and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether
the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include
year and season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the
household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household’s village as reflected by the minimum and maximum
temperature of the year (in °C) and average yearly rainfall (in mm).
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Table C.10: Full set of Mechanism Results Capturing Differential Effect of the ACCI by Geographic Network Centrality on Household-level Extension Activities

(1) (2) (3) (4) (5)
Extension Access Extension Agent Reached Out to Extension Agent Extension Seeking

Dummy Visited Extension Services Advice Index Advice Index

Phone Service in the Village -0.105 0.005 -0.134*** -0.020 -0.057**
(0.125) (0.069) (0.046) (0.043) (0.025)

Phone Service in the Village × Post ACCI 0.273*** 0.118 0.067 0.142** 0.027
(0.095) (0.112) (0.086) (0.068) (0.047)

Inverse Betweenness Centrality × Phone Service in the Village 0.104 0.011 0.176*** 0.061 0.105**
(0.146) (0.096) (0.066) (0.058) (0.047)

Inverse Betweenness Centrality × Post ACCI 0.145** 0.083 0.025 0.103** 0.028
(0.066) (0.092) (0.069) (0.051) (0.040)

Inverse Betweenness Centrality × Phone Service in the Village × Post ACCI -0.244** -0.167 -0.115 -0.158** -0.069
(0.105) (0.120) (0.093) (0.073) (0.051)

Mean Baseline Outcome 0.256 0.117 0.074 0.074 0.037
(SD) (0.437) (0.321) (0.261) (0.230) (0.157)

Observations 27745 27714 27714 27745 27745

R2 0.541 0.533 0.552 0.542 0.555

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. Dependent variables in columns (1)-(3) represent dummies, whereas the dependent variables in
columns (4)-(5) are indices that take values between 0 and 1. Phone Service in the Village dummy measures whether the household’s community reported having phone service in that year, and Post ACCI is the time
dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = 1

1+Betweenness Centrality captures the inverse of geographic betweenness
centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions use data from plots that are within 2 kilometers of their respective
household locations. All regressions include year and season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the
dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household’s village as reflected by the minimum
and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table C.11: Full set of Mechanism Results Capturing Differential Effect of the ACCI by Dyadic Geographic Distances on Household-level Extension Activities

(1) (2) (3) (4) (5)
Extension Access Extension Agent Reached Out to Extension Agent Extension Seeking

Dummy Visited Extension Services Advice Index Advice Index

Phone Service in the Village of i′ -0.044 0.148 0.150 0.025 0.123
(0.108) (0.120) (0.179) (0.144) (0.119)

Phone Service in the Village of i′ × Post ACCI 0.023 -0.013 -0.068 -0.025 -0.014
(0.042) (0.041) (0.044) (0.027) (0.023)

Inverse Distance between i and i′ × Phone Service in the Village of i′ 0.274 -0.193 -0.095 -0.182 -0.093
(0.208) (0.176) (0.366) (0.229) (0.232)

Inverse Distance between i and i′ × Post ACCI 0.153** 0.010 0.199** -0.012 0.145**
(0.060) (0.065) (0.097) (0.038) (0.072)

Inverse Distance between i and i′ × Phone Service in the Village of i′ × Post ACCI -0.202** -0.089 -0.236* -0.022 -0.180**
(0.094) (0.102) (0.122) (0.068) (0.085)

Mean Baseline Outcome 0.256 0.117 0.074 0.074 0.037
(SD) (0.437) (0.321) (0.261) (0.230) (0.157)

Observations 38726 38548 38548 38726 38726

R2 0.586 0.616 0.613 0.638 0.603

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors multi-way clustered at the household i and household i′ level are in parentheses. Dependent variables in columns (1)-(3) represent dummies, whereas the
dependent variables in columns (4)-(5) are indices that take values between 0 and 1. Phone Service in the Village of i′ dummy measures whether the community of household i′ reported having phone service in that year
and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Distance between i and i′ = 1

1+Distance between i and i′ captures the inverse of
geographic distance between households i and i′ measured at the baseline, which is omitted at the level as the regressions include the pair fixed effects. All regressions use data from plots that are within 2 kilometers of
their respective household locations. All regressions include year and season-fixed effects, time-varying controls, pair-fixed effects, and the interaction of the division of household i with year-fixed effects. Time-varying
controls include the total number of plots owned by i, the total number of plots operated by them, whether i has an agricultural input subsidy card, the weather of household i’s village as reflected by the minimum and
maximum temperature of the year (in °C) and average yearly rainfall (in mm), and Phone Service in the Village of i dummy measuring whether i’s community reported having phone service in the year interacted with the
Post ACCI dummy.
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D Robustness Check Results

Table D.1: Placebo Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances

(1) (2) (3) (4)
Inefficiency Actual Yield Inefficiency Actual Yield

Phone Service in the Village -5.094 -113.538 -1.475 -93.224
(14.057) (135.591) (9.473) (118.973)

Phone Service in the Village × Placebo Post ACCI -7.751 36.334 -13.149* 140.657*
(9.346) (133.069) (6.711) (83.189)

Used Rainfed Farming -0.969 -195.520***
(8.163) (73.913)

Used Tractor 253.207*** -76.138
(15.392) (74.331)

Used Rainfed Farming × Phone Service in the Village 19.663 -71.774
(13.247) (92.964)

Used Tractor × Phone Service in the Village -17.477 170.528
(33.301) (132.920)

Used Rainfed Farming × Placebo Post ACCI -6.613 235.266**
(11.408) (116.815)

Used Tractor × Placebo Post ACCI -54.185*** 148.211
(17.591) (126.174)

Used Rainfed Farming × Phone Service in the Village × Placebo Post ACCI 5.276 -276.500**
(18.814) (132.715)

Used Tractor × Phone Service in the Village × Placebo Post ACCI 47.589 -237.195
(33.447) (261.127)

Mean Baseline Outcome 29.625 3582.026 29.625 3582.026
(SD) (208.816) (1734.7) (208.816) (1734.7)

Observations 20000 20621 20000 20354

R2 0.441 0.689 0.495 0.691

Notes: * p<0.10, ** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for the results
in columns (1)-(2) and at the household level for the results in columns (3)-(4). All regressions use data from the first two rounds of the Bangladesh Integrated
Household Survey (BIHS 2011 & 2015). Phone Service in the Village dummy measures whether the household’s community reported having phone service in that
year, and Placebo Post ACCI is the time dummy capturing whether the survey year is 2015. Used Rainfed Farming and Used Tractor dummies capture whether
the household used rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective
household locations. All regressions include year and season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with
year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an
agricultural input subsidy card, and the weather of the household’s village as reflected by the minimum and maximum temperature of the year (in °C) and
average yearly rainfall (in mm).
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(a) By shuffled Rainfed Farming usage (b) By shuffled Tractor usage

Figure D.1: Effect of the Agricultural Call Center Intervention by randomly shuffled input
usage

Notes: The reported triple-difference coefficients for the specification (4), with input usage being captured
by shuffled dummies on Rainfed Farming usage and Tractor usage. The coefficients for each draw are
coming from the interaction of the respective (shuffled) input usage with the variables Phone Service in the
Village and Post ACCI in the same regression. Each draw represents a random shuffling of both input
usage from their respective distributions by survey year. Phone Service in the Village dummy measures
whether the household’s community reported having phone service in that year, and Post ACCI is the
time dummy capturing whether the survey year is post introduction of the Agricultural Call Center
Intervention.

(a) By shuffled Inverse Betweenness Centrality (b) By shuffled Inverse Distance

Figure D.2: Effect of the Agricultural Call Center Intervention by randomly shuffled
Centrality and Distance measures

Notes: The reported triple-difference coefficients for the specifications (5) and (6), with Inverse Betweenness
Centrality and Inverse Distance between i and i′ being captured by shuffled values of the same variables at
the baseline. Each draw represents a random shuffling of the corresponding variable from their respective
distributions for the baseline. Phone Service in the Village dummy measures whether the household’s
community reported having phone service in that year, and Post ACCI is the time dummy capturing
whether the survey year is post introduction of the Agricultural Call Center Intervention.
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Table D.2: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (using
plot fixed-effects instead of household fixed-effects)

(1) (2) (3) (4)
Inefficiency Actual Yield Inefficiency Actual Yield

Phone Service in the Village -1.107 -180.271 -2.772 -149.606
(10.414) (110.602) (8.707) (107.295)

Phone Service in the Village × Post ACCI -15.713** 93.737 2.621 74.593
(7.542) (109.443) (4.964) (92.521)

Used Rainfed Farming -0.454 -148.610*
(8.339) (83.749)

Used Tractor 223.787*** -50.612
(17.716) (117.036)

Used Rainfed Farming × Phone Service in the Village 23.654** -199.533**
(11.333) (94.980)

Used Tractor × Phone Service in the Village 54.787 -60.480
(43.633) (199.343)

Used Rainfed Farming × Post ACCI -2.998 134.051
(10.866) (100.239)

Used Tractor × Post ACCI -52.812 241.116
(32.625) (187.228)

Used Rainfed Farming × Phone Service in the Village × Post ACCI -42.718*** 131.552
(12.125) (128.766)

Used Tractor × Phone Service in the Village × Post ACCI -85.417 75.157
(57.015) (354.660)

Mean Baseline Outcome 29.625 3582.026 29.625 3582.026
(SD) (208.816) (1734.7) (208.816) (1734.7)

Observations 23520 24341 23520 23981

R2 0.492 0.706 0.532 0.707

Notes: * p<0.10, ** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level
for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether
the household’s community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is
post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used
rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household
locations. All regressions include year and season-fixed effects, time-varying controls, plot, crop type, and the interaction of the division with year
fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household
has an agricultural input subsidy card, and the weather of the household’s village as reflected by the minimum and maximum temperature of the year
(in °C) and average yearly rainfall (in mm).
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Table D.3: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (using
the balanced panel of households)

(1) (2) (3) (4)
Inefficiency Actual Yield Inefficiency Actual Yield

Phone Service in the Village 6.876 -281.032** 8.130 -282.477**
(11.642) (133.078) (9.367) (115.513)

Phone Service in the Village × Post ACCI -16.035** 90.827 1.265 72.925
(7.644) (111.925) (4.883) (94.388)

Used Rainfed Farming -0.762 -156.126
(9.581) (99.376)

Used Tractor 226.606*** -61.350
(18.996) (126.123)

Used Rainfed Farming × Phone Service in the Village 21.490 -168.309
(13.151) (112.562)

Used Tractor × Phone Service in the Village 48.814 -27.378
(49.013) (220.215)

Used Rainfed Farming × Post ACCI 0.757 94.780
(11.785) (106.637)

Used Tractor × Post ACCI -56.228* 233.830
(33.609) (191.943)

Used Rainfed Farming × Phone Service in the Village × Post ACCI -42.813*** 128.107
(13.074) (135.183)

Used Tractor × Phone Service in the Village × Post ACCI -84.254 85.637
(61.862) (372.900)

Mean Baseline Outcome 29.625 3582.026 29.625 3582.026
(SD) (208.816) (1734.7) (208.816) (1734.7)

Observations 19191 19853 19191 19578

R2 0.476 0.696 0.524 0.697

Notes: * p<0.10, ** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level
for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether
the household’s community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is
post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used
rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household
locations. All regressions include year and season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with
year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the
household has an agricultural input subsidy card, and the weather of the household’s village as reflected by the minimum and maximum temperature
of the year (in °C) and average yearly rainfall (in mm).
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Table D.4: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (excluding
observations from round 1)

(1) (2) (3) (4)
Inefficiency Actual Yield Inefficiency Actual Yield

Phone Service in the Village -21.688 -393.063* -22.906 -288.744
(31.918) (219.681) (18.483) (291.862)

Phone Service in the Village × Post ACCI -14.971* 145.814 1.365 80.457
(8.791) (124.376) (4.507) (91.702)

Used Rainfed Farming 1.447 -252.161*
(13.676) (129.203)

Used Tractor 191.687*** 143.623
(14.437) (162.345)

Used Rainfed Farming × Phone Service in the Village 20.338 -187.450
(19.323) (145.435)

Used Tractor × Phone Service in the Village 89.992 -515.273*
(62.049) (304.394)

Used Rainfed Farming × Post ACCI 2.395 50.367
(11.687) (121.925)

Used Tractor × Post ACCI -18.486 64.254
(15.607) (177.703)

Used Rainfed Farming × Phone Service in the Village × Post ACCI -37.391** 171.553
(14.934) (146.367)

Used Tractor × Phone Service in the Village × Post ACCI -85.952 464.007
(60.006) (364.352)

Mean Baseline Outcome 29.625 3582.026 29.625 3582.026
(SD) (208.816) (1734.7) (208.816) (1734.7)

Observations 16016 16375 16016 16375

R2 0.498 0.657 0.551 0.660

Notes: * p<0.10, ** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level
for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether
the household’s community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is
post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used
rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household
locations. All regressions include year and season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with
year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the
household has an agricultural input subsidy card, and the weather of the household’s village as reflected by the minimum and maximum temperature
of the year (in °C) and average yearly rainfall (in mm).
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Table D.5: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (using fertilizer
usage, instead of tractor usage, as an indicator of high-yielding input)

(1) (2) (3) (4)
Inefficiency Actual Yield Inefficiency Actual Yield

Phone Service in the Village 13.116 -164.784 -22.603* 73.867
(11.636) (101.555) (12.881) (109.574)

Phone Service in the Village × Post ACCI -17.904** 110.545 20.722* -23.634
(8.685) (99.436) (11.311) (113.221)

Used Rainfed Farming -21.431** -100.772
(10.477) (89.011)

Above Median Fertilizer Usage 157.367*** 552.316***
(6.122) (65.961)

Used Rainfed Farming × Phone Service in the Village 44.144*** -297.652***
(14.786) (102.482)

Above Median Fertilizer Usage × Phone Service in the Village 25.141** -224.811***
(12.528) (85.654)

Used Rainfed Farming × Post ACCI 14.018 27.944
(11.093) (103.688)

Above Median Fertilizer Usage × Post ACCI 4.985 -209.446**
(9.315) (91.655)

Used Rainfed Farming × Phone Service in the Village × Post ACCI -60.155*** 238.759*
(16.276) (138.106)

Above Median Fertilizer Usage × Phone Service in the Village × Post ACCI -35.021** 139.141
(14.883) (125.604)

Mean Baseline Outcome 91.717 3582.026 91.717 3582.026
(SD) (271.615) (1734.7) (271.615) (1734.7)

Observations 20254 27991 20254 20629

R2 0.332 0.631 0.448 0.644

Notes: * p<0.10, ** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level for the results in
columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether the household’s community
reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is post introduction of the Agricultural Call
Center Intervention. Used Rainfed Farming and Above Median Fertilizer Usage dummies capture whether the household used rainfed farming and above the median
level of fertilizer in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions
include year and season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying
controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card,
and the weather of the household’s village as reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).
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Table D.6: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (control-
ling for other input usage)

(1) (2) (3) (4)
Inefficiency Actual Yield Inefficiency Actual Yield

Phone Service in the Village -8.486 -140.377 -11.204 -69.685
(15.121) (104.101) (9.668) (102.927)

Phone Service in the Village × Post ACCI -18.436** 122.106 -0.204 87.948
(7.894) (104.237) (4.311) (80.944)

Used Rainfed Farming 0.127 -163.045*
(8.800) (89.411)

Used Tractor 216.930*** 4.475
(10.466) (88.419)

Used Rainfed Farming × Phone Service in the Village 25.202* -195.873*
(13.391) (100.800)

Used Tractor × Phone Service in the Village 35.782 -36.531
(34.471) (161.531)

Used Rainfed Farming × Post ACCI -4.162 106.126
(9.897) (96.935)

Used Tractor × Post ACCI -39.108** 175.589
(15.362) (138.445)

Used Rainfed Farming × Phone Service in the Village × Post ACCI -47.315*** 151.544
(13.161) (121.893)

Used Tractor × Phone Service in the Village × Post ACCI -47.678 65.131
(40.772) (262.413)

Mean Baseline Outcome 29.625 3582.026 29.625 3582.026
(SD) (208.816) (1734.7) (208.816) (1734.7)

Observations 20254 20629 20254 20629

R2 0.417 0.645 0.484 0.647

Notes: * p<0.10, ** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level
for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether
the household’s community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is
post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used
rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household
locations. All regressions include year and season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with
year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the
household has an agricultural input subsidy card, and the weather of the household’s village as reflected by the minimum and maximum temperature
of the year (in °C) and average yearly rainfall (in mm). All regressions also control for fertilizer use (kilograms per hectare), manure use (taka per
hectare), pesticide use (taka per hectare), cost of the machine (taka per hectare), cost of seeds (taka per hectare), cost of labor (taka per hectare), family
labor hours (per hectare), and hired labor hours (per hectare).
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Table D.7: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (using
simulation-based potential yield at the 90th percentile)

(1) (2) (3) (4)
Inefficiency Actual Yield Inefficiency Actual Yield

Phone Service in the Village -6.330 -164.784 -9.492 -111.050
(12.978) (101.555) (8.801) (96.423)

Phone Service in the Village × Post ACCI -17.658** 110.545 -2.178 87.096
(7.718) (99.436) (4.599) (80.204)

Used Rainfed Farming -0.660 -161.954**
(8.227) (73.481)

Used Tractor 262.588*** -5.803
(13.649) (70.683)

Used Rainfed Farming × Phone Service in the Village 27.675** -222.761***
(12.176) (85.864)

Used Tractor × Phone Service in the Village 18.670 43.134
(34.279) (131.907)

Used Rainfed Farming × Post ACCI -1.718 87.067
(10.539) (92.611)

Used Tractor × Post ACCI -72.464*** 257.615*
(25.654) (147.503)

Used Rainfed Farming × Phone Service in the Village × Post ACCI -49.476*** 163.653
(13.877) (120.209)

Used Tractor × Phone Service in the Village × Post ACCI -17.249 -82.591
(44.461) (252.435)

Mean Baseline Outcome 29.625 3582.026 29.625 3582.026
(SD) (208.816) (1734.7) (208.816) (1734.7)

Observations 27298 27991 27298 27723

R2 0.399 0.631 0.468 0.633

Notes: * p<0.10, ** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level
for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether
the household’s community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is
post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used
rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household
locations. All regressions include year and season-fixed effects, time-varying controls, plot, crop type, and the interaction of the division with year
fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the household
has an agricultural input subsidy card, and the weather of the household’s village as reflected by the minimum and maximum temperature of the year
(in °C) and average yearly rainfall (in mm).
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Table D.8: Post-Intervention Effect of the Agricultural Call Center Intervention on Plot-level Agricultural Performances (fixing
the Phone Service in the Village at the baseline)

(1) (2) (3) (4)
Inefficiency Actual Yield Inefficiency Actual Yield

Phone Service in the Village × Post ACCI -13.052* 95.124 4.017 47.984
(6.703) (98.833) (4.187) (81.080)

Used Rainfed Farming -0.736 -156.781*
(9.242) (95.095)

Used Tractor 214.205*** -4.381
(11.432) (95.258)

Used Rainfed Farming × Phone Service in the Village 31.015** -317.568***
(13.654) (106.130)

Used Tractor × Phone Service in the Village 36.440 6.699
(30.402) (153.942)

Used Rainfed Farming × Post ACCI -1.198 56.643
(10.070) (100.624)

Used Tractor × Post ACCI -35.909** 169.468
(15.826) (144.333)

Used Rainfed Farming × Phone Service in the Village × Post ACCI -51.810*** 239.646*
(13.228) (124.537)

Used Tractor × Phone Service in the Village × Post ACCI -50.456 65.841
(37.657) (266.225)

Mean Baseline Outcome 29.625 3582.026 29.625 3582.026
(SD) (208.816) (1734.7) (208.816) (1734.7)

Observations 27283 27976 20246 20621

R2 0.399 0.630 0.482 0.637

Notes: * p<0.10, ** p<0.05, *** p<0.01. All results report cluster robust standard errors in the parentheses. The clustering is at the community level
for the results in columns (1)-(2) and at the household level for the results in columns (3)-(4). Phone Service in the Village dummy measures whether
the household’s community reported having phone service in the baseline, and Post ACCI is the time dummy capturing whether the survey year is
post introduction of the Agricultural Call Center Intervention. Used Rainfed Farming and Used Tractor dummies capture whether the household used
rainfed farming and tractor in their plot, respectively. All regressions use data from plots that are within 2 kilometers of their respective household
locations. All regressions include year and season-fixed effects, time-varying controls, household, crop type, and the interaction of the division with
year fixed-effects. Time-varying controls include the dummy capturing whether the household owns the plot, a dummy capturing whether the
household has an agricultural input subsidy card, and the weather of the household’s village as reflected by the minimum and maximum temperature
of the year (in °C) and average yearly rainfall (in mm).

Table D.9: Differential Effect of the Agricultural Call Center Intervention by Geographic Network Centrality on Plot-level Agricultural
Outcomes (using plot fixed-effects instead of household fixed-effects)

(1) (2) (3) (4)
Inefficiency Actual Yield Used Rainfed Used

Farming Tractor

Phone Service in the Village -29.307 -97.127 -0.148* -0.097
(23.591) (297.499) (0.082) (0.078)

Phone Service in the Village × Post ACCI 40.603 -332.128 0.024 -0.020
(27.909) (222.526) (0.055) (0.058)

Inverse Betweenness Centrality × Phone Service in the Village 33.777 -98.676 0.172* 0.086
(28.416) (338.923) (0.088) (0.086)

Inverse Betweenness Centrality × Post ACCI 40.071 -417.238** 0.016 -0.048
(26.975) (170.934) (0.042) (0.042)

Inverse Betweenness Centrality × Phone Service in the Village × Post ACCI -67.122** 508.025** 0.002 -0.010
(30.948) (252.068) (0.064) (0.064)

Mean Baseline Outcome 29.625 3582.026 0.321 0.071
(SD) (208.816) (1734.7) (0.467) (0.257)

Observations 23334 24141 24141 23791

R2 0.492 0.706 0.701 0.746

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. Phone Service in the Village dummy measures
whether the household’s community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is
post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = 1

1+Betweenness Centrality captures the inverse of geographic
betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions
use data from plots that are within 2 kilometers of their respective household locations. All regressions include year and season-fixed effects, time-varying
controls, plot, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the
household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household’s village as
reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

57



Table D.10: Differential Effect of the Agricultural Call Center Intervention by Geographic Network Centrality on Plot-level Agricultural
Outcomes (using the balanced panel of households)

(1) (2) (3) (4)
Inefficiency Actual Yield Used Rainfed Used

Farming Tractor

Phone Service in the Village -28.483 -52.351 -0.099 -0.095
(31.260) (286.219) (0.100) (0.108)

Phone Service in the Village × Post ACCI 33.327 -440.795** -0.006 -0.032
(20.271) (206.694) (0.051) (0.055)

Inverse Betweenness Centrality × Phone Service in the Village 34.050 -228.029 0.118 0.096
(35.575) (324.254) (0.108) (0.117)

Inverse Betweenness Centrality × Post ACCI 28.267 -462.630*** -0.000 -0.069
(17.806) (154.146) (0.037) (0.044)

Inverse Betweenness Centrality × Phone Service in the Village × Post ACCI -60.301*** 666.110*** 0.031 0.014
(23.106) (232.812) (0.058) (0.060)

Mean Baseline Outcome 29.625 3582.026 0.321 0.071
(SD) (208.816) (1734.7) (0.467) (0.257)

Observations 21466 22021 22021 21807

R2 0.338 0.615 0.655 0.544

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. Phone Service in the Village dummy measures
whether the household’s community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is
post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = 1

1+Betweenness Centrality captures the inverse of geographic
betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions
use data from plots that are within 2 kilometers of their respective household locations. All regressions include year and season-fixed effects, time-varying
controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the
household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household’s village as
reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).

Table D.11: Differential Effect of the Agricultural Call Center Intervention by Geographic Network Centrality on Plot-level Agricultural
Outcomes (excluding observations from round 1)

(1) (2) (3) (4)
Inefficiency Actual Yield Used Rainfed Used

Farming Tractor

Phone Service in the Village -235.256* 868.769 0.055 -0.708*
(142.104) (569.248) (0.064) (0.385)

Phone Service in the Village × Post ACCI 27.811 -511.326** -0.052 -0.011
(23.415) (217.478) (0.061) (0.064)

Inverse Betweenness Centrality × Phone Service in the Village 243.206 -1435.240** -0.071 0.729*
(148.948) (691.347) (0.106) (0.405)

Inverse Betweenness Centrality × Post ACCI 24.983 -657.915*** -0.017 -0.071
(19.498) (165.015) (0.043) (0.051)

Inverse Betweenness Centrality × Phone Service in the Village × Post ACCI -51.350* 786.412*** 0.059 -0.010
(27.349) (245.779) (0.069) (0.070)

Mean Baseline Outcome 29.625 3582.026 0.321 0.071
(SD) (208.816) (1734.7) (0.467) (0.257)

Observations 15852 16204 16204 16204

R2 0.498 0.658 0.692 0.724

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. Phone Service in the Village dummy measures
whether the household’s community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is
post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = 1

1+Betweenness Centrality captures the inverse of geographic
betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions
use data from plots that are within 2 kilometers of their respective household locations. All regressions include year and season-fixed effects, time-varying
controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the
household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household’s village as
reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).
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Table D.12: Differential Effect of the Agricultural Call Center Intervention by Dyadic Geographic Distances on Household-level Agricultural
Outcomes (excluding observations from round 1)

(1) (2) (3) (4)
Inefficiency Actual Yield Used Rainfed Used

Farming Tractor

Phone Service in the Village of i′ -51.837 -2575.994** 0.158* -0.076
(51.059) (1182.204) (0.087) (0.092)

Phone Service in the Village of i′ × Post ACCI 63.271* -736.776 -0.045* -0.016
(37.363) (586.391) (0.024) (0.025)

Inverse Distance between i and i′ × Phone Service in the Village of i′ 103.320 3453.561* -0.379* 0.162
(79.955) (1873.143) (0.222) (0.222)

Inverse Distance between i and i′ × Post ACCI 148.393** -4266.983** -0.167*** -0.012
(62.835) (1664.085) (0.047) (0.045)

Inverse Distance between i and i′ × Phone Service in the Village of i′ × Post ACCI -184.272** 5059.340** 0.157** 0.069
(88.375) (2072.056) (0.072) (0.065)

Mean Baseline Outcome 29.625 3582.026 0.321 0.071
(SD) (208.816) (1734.7) (0.467) (0.257)

Observations 38726 38726 38726 38726

R2 0.362 0.902 0.687 0.691

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors multi-way clustered at the household i and household i′ level are in parentheses. Phone Service in
the Village of i′ dummy measures whether the community of household i′ reported having phone service in that year and Post ACCI is the time dummy capturing
whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Distance between i and i′ = 1

1+Distance between i and i′ captures the inverse
of geographic distance between households i and i′ measured at the baseline, which is omitted at the level as the regressions include the pair fixed effects. All
regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include year and season-fixed effects, time-varying
controls, pair fixed effects, and the interaction of the division of household i with year fixed-effects. Time-varying controls include the total number of plots owned
by i, the total number of plots operated by them, whether i has an agricultural input subsidy card, the weather of household i’s village as reflected by the minimum
and maximum temperature of the year (in °C) and average yearly rainfall (in mm), and Phone Service in the Village of i dummy measuring whether i’s community
reported having phone service in the year interacted with the Post ACCI dummy.

Table D.13: Differential Effect of the Agricultural Call Center Intervention by Geographic Network Centrality on Plot-level Agricultural
Outcomes (with respect to placebo intervention between 2011 and 2015)

(1) (2) (3) (4)
Inefficiency Actual Yield Used Rainfed Used

Farming Tractor

Phone Service in the Village -46.395* -228.411 -0.088 -0.069
(26.834) (335.691) (0.090) (0.072)

Phone Service in the Village × Post ACCI -3.005 330.303 0.076 -0.018
(22.678) (222.396) (0.055) (0.037)

Inverse Betweenness Centrality × Phone Service in the Village 50.387 136.747 0.012 0.033
(33.643) (389.413) (0.099) (0.086)

Inverse Betweenness Centrality × Post ACCI -22.797 516.034*** 0.054* 0.015
(19.102) (191.100) (0.032) (0.027)

Inverse Betweenness Centrality × Phone Service in the Village × Post ACCI -3.135 -377.318 -0.038 0.022
(26.096) (246.921) (0.060) (0.042)

Mean Baseline Outcome 29.625 3582.026 0.321 0.071
(SD) (208.816) (1734.7) (0.467) (0.257)

Observations 19836 20445 20445 20183

R2 0.442 0.689 0.716 0.605

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. Phone Service in the Village dummy measures
whether the household’s community reported having phone service in that year, and Post ACCI is the time dummy capturing whether the survey year is
post introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = 1

1+Betweenness Centrality captures the inverse of geographic
betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions
use data from plots that are within 2 kilometers of their respective household locations. All regressions include year and season-fixed effects, time-varying
controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the
household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household’s village as
reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).
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Table D.14: Differential Effect of the Agricultural Call Center Intervention by Dyadic Geographic Distances on Household-level Agricultural
Outcomes (with respect to placebo intervention between 2011 and 2015)

(1) (2) (3) (4)
Inefficiency Actual Yield Used Rainfed Used

Farming Tractor

Phone Service in the Village of i′ -44.988** -336.568 0.012 -0.094**
(20.069) (782.428) (0.037) (0.041)

Phone Service in the Village of i′ × Post ACCI -52.104 473.667 0.035 -0.023
(43.278) (608.213) (0.022) (0.023)

Inverse Distance between i and i′ × Phone Service in the Village of i′ 23.838 1830.899 -0.101 0.024
(80.126) (3189.722) (0.117) (0.148)

Inverse Distance between i and i′ × Post ACCI -125.722 724.803 0.020 -0.022
(89.192) (997.452) (0.039) (0.029)

Inverse Distance between i and i′ × Phone Service in the Village of i′ × Post ACCI 173.922 -1711.449 -0.089 0.048
(135.452) (1679.774) (0.064) (0.053)

Mean Baseline Outcome 29.625 3582.026 0.321 0.071
(SD) (208.816) (1734.7) (0.467) (0.257)

Observations 40284 40284 40284 40212

R2 0.313 0.878 0.715 0.700

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors multi-way clustered at the household i and household i′ level are in parentheses. Phone Service in
the Village of i′ dummy measures whether the community of household i′ reported having phone service in that year and Post ACCI is the time dummy capturing
whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Distance between i and i′ = 1

1+Distance between i and i′ captures the inverse
of geographic distance between households i and i′ measured at the baseline, which is omitted at the level as the regressions include the pair fixed effects. All
regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include year and season-fixed effects, time-varying
controls, pair fixed effects, and the interaction of the division of household i with year fixed-effects. Time-varying controls include the total number of plots owned by
i, the total number of plots operated by them, whether i has an agricultural input subsidy card, the weather of household i’s village as reflected by the minimum and
maximum temperature of the year (in °C) and average yearly rainfall (in mm), and Phone Service in the Village of i dummy measuring whether i’s community reported
having phone service in the year interacted with the Post ACCI dummy.

Table D.15: Differential Effect of the Agricultural Call Center Intervention by Geographic Network Centrality on Plot-level Agricultural
Outcomes (fixing the Phone Service in the Village at the baseline)

(1) (2) (3) (4)
Inefficiency Actual Yield Used Rainfed Used

Farming Tractor

Phone Service in the Village × Post ACCI 35.417* -457.967** -0.023 -0.022
(19.679) (196.915) (0.049) (0.054)

Inverse Betweenness Centrality × Post ACCI 25.993 -471.246*** 0.004 -0.057
(17.423) (148.817) (0.035) (0.043)

Inverse Betweenness Centrality × Phone Service in the Village × Post ACCI -57.415** 652.454*** 0.050 0.000
(22.452) (222.166) (0.056) (0.059)

Mean Baseline Outcome 29.625 3582.026 0.321 0.071
(SD) (208.816) (1734.7) (0.467) (0.257)

Observations 27049 27730 27730 27467

R2 0.400 0.630 0.673 0.558

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the household level are in parentheses. Phone Service in the Village dummy measures
whether the household’s community reported having phone service in the baseline, and Post ACCI is the time dummy capturing whether the survey year is
post-introduction of the Agricultural Call Center Intervention. Inverse Betweenness Centrality = 1

1+Betweenness Centrality captures the inverse of geographic
betweenness centrality for the household at the baseline, which is omitted at the level as the regressions include the household fixed effects. All regressions
use data from plots that are within 2 kilometers of their respective household locations. All regressions include year and season-fixed effects, time-varying
controls, household, crop type, and the interaction of the division with year fixed-effects. Time-varying controls include the dummy capturing whether the
household owns the plot, a dummy capturing whether the household has an agricultural input subsidy card, and the weather of the household’s village as
reflected by the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm).
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Table D.16: Differential Effect of the Agricultural Call Center Intervention by Dyadic Geographic Distances on Household-level Agricultural
Outcomes (fixing the Phone Service in the Village of i′ at the baseline)

(1) (2) (3) (4)
Inefficiency Actual Yield Used Rainfed Used

Farming Tractor

Phone Service in the Village of i′ × Post ACCI 29.836* -300.765 -0.031 -0.035*
(15.389) (513.859) (0.021) (0.018)

Inverse Distance between i and i′ × Post ACCI 91.516*** -3488.111** -0.144*** -0.008
(30.185) (1405.068) (0.043) (0.037

Inverse Distance between i and i′ × Phone Service in the Village of i′ × Post ACCI -105.736** 4509.938** 0.049 0.045
(41.666) (1843.254) (0.070) (0.056)

Mean Baseline Outcome 29.625 3582.026 0.321 0.071
(SD) (208.816) (1734.7) (0.467) (0.257)

Observations 60724 60724 60724 60667

R2 0.243 0.875 0.658 0.596

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors multi-way clustered at the household i and household i′ level are in parentheses. Phone Service
in the Village of i′ dummy measures whether the community of household i′ reported having phone service in the baseline and Post ACCI is the time dummy
capturing whether the survey year is post introduction of the Agricultural Call Center Intervention. Inverse Distance between i and i′ = 1

1+Distance between i and i′ captures
the inverse of geographic distance between households i and i′ measured at the baseline, which is omitted at the level as the regressions include the pair fixed
effects. All regressions use data from plots that are within 2 kilometers of their respective household locations. All regressions include year and season-fixed effects,
time-varying controls, pair fixed effects, and the interaction of the division of household i with year fixed-effects. Time-varying controls include the total number of
plots owned by i, the total number of plots operated by them, whether i has an agricultural input subsidy card, the weather of household i’s village as reflected by
the minimum and maximum temperature of the year (in °C) and average yearly rainfall (in mm), and Phone Service in the Village of i dummy measuring whether i’s
community reported having phone service in the year interacted with the Post ACCI dummy.
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